
REPORT DOCUMENTATION PAGE

W7~~-' .3~2N~- ~ REPORT -A ~-
I Ar THESIS/ .

Interactive Constraint-Based Solid Modeling
as a Design Tool 9

Kenneth L. Toblin, Captain

_ AFIT Student Attending: Ohio State University AFIT/CI/CIA-91-046

,C.%)O '? 5P NO.:N. '.C i© AG ; 'GE4 NAMLE(SI ANZJ, A)>{ E, [i 10 SpQN3C;NG ''];, -.

(%J~ AGENCY REPCI' 7

AFIT/CI

Wright-Patterson AFB OH 45433-6583

123 CISTRIB3T ON AVA!LABIL.TY S 'AT IAENT 12b DI;STRrBLfU CNC DE

Approved for Public Release lAW 190-1
Distributed Unlimited

ERNEST A. HAYGOOD, Ist Lt, USAF

Executive Officer

'3. 4 ST"RALC ,',, "

DTICJJF, r, ETE p

AUG 0 8 1991

14. SUBJECT TERMS IS. NUMBER OF PAGES

148
16. PRICE CODE

17 SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ABS'q: t

OF REPORT OF THIS PAGE OF ABSTRACT

,' .::: " ' ,) .S 0 ,'a -= '1 : - ") C e " -

THESIS ABSTRACT

AUTHOR: Kenneth Lee Tobin MILITARY RANK AND BRANCH: Captain, USAF

TITLE OF THESIS: Interactive Constraint-Based Solid Modeling as a Design Tool.

DATE: 1991 NUMBER OF PAGES: 148

DEGREE AWARDED: Master of Architecture (M.ARCH)

NAME OF INSTITUTION: The Ohio State University.

ABSTRACT:

Architectural design knowledge which may take the form of constraints and how it can be
incorporated into the solid modeling process is explored and discussed. This theoretical
exploration leads to an illustration of a functional general purpose three-dimensional solid modeler
which utilizes design knowledge as constraints upon the interactive solid modeling process. From
this illustration, it is shown that the incorporation of constraints into Computer-Aided Architectural
Design can effectively assist in the early stages of the design process. A prototypicai application is
presented which provides an example in which the definition and implementation of specific design
knowledge constrains or characterizes the generative and interactive behavior of user definable
three-dimensional entities. The basis of the thesis lies in the ability to create a design space, or
building envelope, and to allow the interactive modeling of conceptual elcmcnts within, and
constrained to, that design space, including the realistic interaction between the entities themselves.

A prototypical application, called CMod, has been implemented as an extension to an existing
educational modeling shell. CoMod operates on the Macintosh Il® micro-computer and can
effectively illustrate constraint-based interactive modeling as a conceptual design tool.

KEY PRIMARY AND SECONDARY SOURCES:

Coyne, R.D., M.A.Roscnman, A.D.Radford, M.Balachandran, and J.S.Gcro. (1990).
Knowledge-Based Design Systems, Addison-Wesley, Reading, Massachusetts.

Foley, J. D., A. van Dam, S.K.Fiencr, J.F.Hughcs, Computer Graphics: Principles and Practice,
Addison-Wesley Publishing Conpany, Reading Massachusetts.

Mitchell, W.J. (1990). The Logic ofArchitecture, The MIT Press, Cambridge. Massachusetts.

Yessios, C.I. (1987). "Architectural modeling and knowledge systems." In Proceedings, NCGA
Computer Graphics.

91-07260
91 8 07 138inn nii!

INTERACTIVE CONSTRAINT-BASED SOLID MODELING

AS A DESIGN TOOL

A Thesis

Presented in Partial Fulfillment of the Requirements tr

the degree Master of Architecture in the

Graduate School of The Ohio State University

by

Kenneth Lee Tobin, B.ARCH. B.S.

IA-IL 111
The Ohio State University

1991

Master's Examination Committee: Approved by

Christos 1. Yessios ,

Benjamin Gianni \-
Advis oDepartment ot\ 'chitccture

Copyright by

Kenneth Lee Tobin

1991

To my family

ACKNOWLEDGMENTS

I wish to thank the Department of Defense, United States Air Force, and the Air Force Institute

of Technology for their support, and for the opportunity I have received to pursue an advanced

education. I would like to extend my appreciation to The Ohio State University. Department of

Architecture, Computer Aided Architectural Design program, for the use of their MacMod844

educational shell. I wish to acknowledge, and extend a deep appreciation to. Dr. Chris 1.

Yessios for his contributions and support throughout my graduate studies, and for his

guidance and advice during this thesis project. Thanks to Benjamin Gianni for his continuous

enthusiasm and support while serving as a member of my thesis committee. I would also like

to thank my colleagues in the CAAD program for their continued support and friendship. Most

importantly. I would like to express my love and appreciation to my wife. Susan, for her

understanding and support.

~iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

V IT A iv

LIST OF FIGURES .. ix

PR E FA C E ... xvi

CHAPTER PAGE

I INTRODUCTION .. I

1.1 Overview ...

1.2 Application to Current CAAD Theory 4

.3 Historical Basis ... 7

1.4 Goals and Expectations .. 8

If CONSTRAINT-BASED MODELING OPERATIONS II

2.1 Knowledge Specification .. 12

2.2 Knowledge Manipulation ... 12

2.3 Constraint Modeling .. 14

2.3.1 Entity Characteristics ... 14

2.3.1.1 Spatial Representation 15

2.3.1.2 Dimensional Attributes !6

2.3.1.3 Spatial Characteristics 17

2.3.1.4 Rotational Attributes 18

2.3.1.5 Mobility Characteristic 19

2.3.2 Relational Characteristics 21

2.3.2.1 Proximity Relationships 21

2.3.2.2 Containment Relationships 22

2.3.2.3 Associative Relationships 23

2.3.3 Identification Characteristics 26

v

2.3.3.1 Type Definition 26

2.4 Knowledge Query .. 27

2.5 D irection ... 27

I11 CoMOD - SYSTEM OVERVIEW AND USER'S MANUAL 28

3.1 Introduction to C°Mod ... 29

3.1.1 Activating the program .. 29

3.1.2 Graphical Environment ... 30

3.2 Overview of the Menu and Command Structure 31

3.2.1 The Apple Menu .. 31

3.2.2 The File Menu ... 32

3.2.3 The Edit Menu ... 33

3.2.4 The Height Menu .. 34

3.2.5 The Views Menu ... 35

3.2.6 The Modes Menu .. 36

3.2.7 The Options Menu ... 37

3.3 Discussion of Basic Capabilities ... 38

3.3. 1 Two-Dimensional Drawing 39

3.3.2 Three-Dimcnsional Extrusions 40

3.3.3 Three-Dimensional Convergence 41

3.3.4 Threc-Dimcnsional Objects of Revolution 42

3.3.5 Geometric Editing ... 43

3.3.6 Topological Editing .. 43

3.3.7 Texturus .. 44

3.3.8 Void Modeling .. 45

3.3.9 Color - Surface Shading 46

3.3.10 Constraint-Based Modeling 47

3.4 CoMod Constraint Operations .. 48

3.4.1 Set and View-Modify .. 49

3.4.1.1 Entity Characteristics 50

3.4. 1. 1.1 Spatial Representation 50

3.4. 1. 1.2 Dimensional Characteristics 51

3.4. 1. 1.3 Spatial Characteristics 53

3.4. 1. 1.4 Rotational Attributes 53

3.4. 1. 1.5 Mobility Characteristics 54

vi

3.4.1.2 Relational Characteristics 56

3.4.1.2. I Proximity Relationships 56

3.4.1.2.2 Containment Relationships 57

3.4.1.2.3 Associative Relationship 59

3.4.1.3 Identification Attribute 64

3.4.1.3.1 Type Definition 64

3.4.2 Store Type and Retrieve Type 65

3.4.2.1 Store Type .. 65

3.4.2.2 Retrieve Type .. 66
3.4.3 Q uery ... 66

IV INTERNAL WORKINGS AND ALGORITHMS 68

4.1 Discussion of the Internal Composition 68
4.1.1 Object Data Structure .. 69

4.1.2 Constraint Data Structure 73
4.2 Algorithmic Outline of Required Procedures 82

4.2.1 Knowledge Specification 82

4.2.1.1 User Interface 82
4.2.1.2 Dialog Handler 84

4.2.2 Entity Generation .. 86
4.2.2. 1 Generation within Dimensional Constraints 86

4.2.3 Constraint Modeling .. 92

4.2.3.1 Entity Manipulation With Constraints 92

4.2.3.2 Constraint Satisfaction 93
4.2.3.3 Detection and lntcrfcrcncc Determination 96

V C*MOD APPLICATIONS .. 101
5.1 Conceptual Design of an Architectural Element 101

5.2 Conceptual Design of Building Components 105
5.3 Conceptual Design Utilizing the Design Space 112

5.4 Summary of Applications .. 117

VI EXTENSIONS AND FUTURE DIRECTIONS 118

6. 1 Extensions to CoMod ... 118

6.1.1 CoMod Operations ... 119

vii

6.1.2 Algoiilhm Coherence 119
6.2 Extensions to Constraint- Based Modeling Operations 120

6.2.1I Entity Characteristic Operations......................... 120

6.2.2 Relational Characteristic Operations..................... 121
6.2.3 Physical Laws of Nature............................... 122

6.3 Future Direction of Cons trai nt-Based Solid Modeling 123

VII CONCLUSIONS .. 124

LIST OF REFERENCES.. 127

viii

LIST OF FIGURES

FIGURES PAGE

1. Prelim inary site inform ation .. 2

2. Supplementary site inform ation .. 3

3. Design space constrained by site limitations .. .

4. Illustration of modeling within the design space 4

5. Components of the modeling process ... 5

6. Flow diagram of the simulation process of achieving problem satisfaction 6

7. Flow diagram of the optimization process of achieving problem satisfaction 6

8. Flow diagram of the interactive constraint process of achieving
problem satisfaction 7

9. Design know ledge of a space ... 12

10. Design know ledge of a solid ... 12

I. Constraints upon a single entity and stored as a brick definition 13

12. Preset constraints applied to all subsequently generated entities 13

13. Representation of a solid entity and a space entity 15

14. Three-dimensional representation of solids and spaces 15

15. Visualization of the width, length, and height dimensional criteria 16

16. Three-dimensional representation of the bounding box and dimensional data .. 16

17. Bounding box and solid entity in thrce-spacc 17

18. Replication of a solid entity in the width dimension 17

19. An illustration of the area characteristic ... 18

ix

20. An illustration of the volume characteristic ... 18

2 I. Visualization of the limits on the x-y reference plane 19

22. Example of an object rotated about the origin, constrained to limits 19

23. Illustration of an interaction between a translating entity and an entity with
fixed m obility ... 20

24. Illustration of an interaction between a translating entity and an entity with
free m obility 2 1

25. An example of the proximity zone and it's relationship with an entity 22

26. Example of the containment relationship and it's interaction between entities .. 23

27. Example of the attract association and secondary entity with free mobility 24

28. Example of the attract association and secondary entity with fixed mobility 24

29. Example of the repel association and secondary entity with free mobility 25

30. Example of the repel association and secondary entity with fixed mobility 25

3 1. An illustration of the type definitions ... 26

CMod prototypical application.. 28

33. C °M od icons ... 29

34. C°Mod graphic environment .. 30

35. The C-Mod menu bar 31

36. A pple m enu ... 3 "1

37. About Constraint Mod dialog box ... 31

38 . F ile m enu ... 32

39. File icon types .. I

40. Save file dialog box .. 33

41. Load file dialog box ... 33

42. Edi m enu .. 33

43. An illustration of the reference planes viewed from 45-45 angle 34

44. The height m enu ... 34

x

45. The views menu ... 35

46. The effects of the view command on the reference plane 35

47. The m odes m enu .. 36

48. The options m enu .. 38

49. Basic user interface in the graphical environment 39

50. The tool box of icons in the two-dimensional drawing mode 40

51. An example of drawing in the two-dimensional drawing mode 40

52. The tool box of icons in the extrude mode .. 41

53. An example of creating solid objects in the extrude mode 41

54. The tool box of icons in the converge mode 41

55. An example of creating solid objects in the converge mode 41

56. The tool box of icons in the revolve mode .. 42

57. An example ofcrcating solid objects in the revolve mode 42

58. The tool box of icons in the g-edit mode .. 43

59. An example of editing solid objects in the g-edit mode 43

60. The tool box of icons in the t-edit mode ... 44

61. An example of editing solid objects in the t-edit mode 44

62. The tool box of icons in the textures mode 45

63. An example of rend -ring solid objects in the texture mode 45

64. The tool box of icons in the void model mode 45

65. An example of generating a two-dimensional void model and a solid roof
elem ent from the void ... 45

66. The tool box of icons in the colors mode ... 46

67. An example of rendering solid objects in the colors mode 46

68. The tool box of icons in the constraints mode 47

69. An example of editing solid objects (g-edit) with apply constraints active 47

xi

70. The constraint mode sub-menu .. 48

7 I. Dialog box for the spatial representation constraint 50

72. Illustration of the solid and space representation 50

73. Dialog box for the dimensional characteristics constraint 51

74. Illustration of the construction lines provided to visualize the constraints 51

75. An illustration of the interactive generation of an entity within a dimensional
set of constraints ... 52

76. An illustration of an object created within the dimensional constraints 52

77. Geometric editing within the limitations of the dimensional constraints 52

78. Visualization of the bounding box method of maintaining dimensional data ... 52

79. Dialog box for the spatial characteristics constraint 53

80. Illustration of the application of spatial characteristics to the object 53

81. Dialog box for the rotational attributes constraint 54

82. Illustration of the application of rotational attributes to the object 54

83. Dialog box for the mobility characteristics constraint 55

84. Assignments of the mobility characteristic of two solid entities 55

85. An illustration of the dynamic interaction between an object translating in
three-space which confronts a fixed object 55

86. An illustration of the dynamic interaction between an object translating in
threc-spacc which confronts a free objc,". .. 55

87. Dialog box for the proximity relationship for solid entities 57

88. The interaction between entities with and without proximity relationships 57

89. Dialog box for the proximity relationship lor space entities 57

90. The interaction between a space entity and two solid entities 57

91. Dialog box for the containment relationship for solid entities 58

92. Dialog box for the containment relationship for space entities 58

93. An illustration of the containment constraint on the modeling process 58

xii

94. Dialog box for the associative relationship between entities 59

95. The offset from the proximity zone which determines activation of the
associative relationship ... 59

96. The anticipated translation and resultant interaction involving an entity with
free mobility and an attract association ... 60

97. The resulting interaction between an entity with free mobility and an attract
association .. 60

98. The anticipated translation and resultant interaction involving an entity with
fixed mobility and an attract association ... 61

99. The resulting interaction between an entity with fixed mobility and an attract
association .. 6 1

100. The anticipated translation and resultant interaction involving an entity with
free mobility and a repel association ... 62

101. The resulting interaction between an entity with free mobility and a repel
association .. 62

102. The anticipated translation and resultant interaction involving an entity with
fixed mobility and a repel association .. 63

103. The resulting interaction between an entity with fixed mobility and a repel

association .. 63

104. The type definition dialog box .. 64

105. The type definition file .. 65

106. Store file dialog box ... 66

107. Retrieve file dialog box .. 66

108. The query dialog box .. 67

109. Topological levels of an object ... 69

110. Diagram of the object data structure .. 70

11I. Diagram of the constraint data structure ... 74

112. An example of the internal constraint database for an entity 81

113. Illustration of the interface calls to properly invoke the dialog handler 83

114. Illustration of the dialog handler ... 85

xiii

115. Proximity/Association resultant matrix .. 97

116. Generation of an entity within dimensional constraints 102

117. Results illustrating the generated entity ... 102

118. Topological editing of the entity ... 102

119. Geometric edition of the inserted segments .. 102

120. Subsequent topological and geometric editing to create an
architectural elem ent 103

121. Further geometric editing of a face of the architectural entity 103

122. Subsequent geometric editing within dimensional constraints 104

123. Rotation of the element on the x-y plane ... 104

124. Illustration of the data representation after rotation 104

125. Illustration of completed architectural element modeled in C-Mod 104

126. A rendered illustration of an architectural clement, which was created
utilizing the constraint operations of CoMod 105

127. An illustration of three rooms created with the void modeling operations 106

128. Geometric editing of room A, and subsequent translation of B and C 106

129. Final placement of three rooms constrained by the solidity of the entities 107

130. Generation and placement of a horizontal solid entity 107

131. Geometric editing of the roof entity and resulting interaction with the rooms . 11)8

132. An illustration of element generation within dimensional constraints
with the replication operations activated .. 108

133. The results of multiple column generation by replication 109

134. Topological and geometric editing within dimensional constraints 109

135. Continued topological and geometric editing of the roof clement 110

136. Translation of the columns constrained by the mobility of the roof 110

137. Elevation view of the placement of a base for the columns restricted
by the m obility of the roof ... 110

xiv

138. Results of the constraint-based interactive modeling utilized for

a conceptual design ... 1 10

139. Rendered results of a schematic design solution utilizing CoMod III

140. Creation of a design space within dimensional constraints 112

141. Modeling the design space interactively by inserting a segment in the
face of a space ... 112

142. Establishing the shadow/sunlight restriction upon the design space 113

143. The generation of a solid entity within the design space 113

144. Translation of the solid entity within the design space, and restricted
to the constraints of the design space ... 113

145. Interactive modeling of the solid entity within and constrained to the
design space ... 113

146. Subsequent geometric editing of the solid entity constrained to the height
and shadow setback of the design space .. 114

147. Creation of a second entity within the design space 114

148. Vertical translation of the solid entity constrained to the height
lim itations of the design space ... 1 15

149. Association attribute of attraction established between the two Solid entities .. 115

!50. Generation of additional solid entities within the design space 115

151. Completion of the conceptual design within the design space 115

152. An illustration of the rendered results of the conceptual design created
by the prototypical application CoMod ... 116

xv

PREFACE

The prototypical constraint-based solid modeler, C.Mod, presented in this thesis, is an

extension to an existing educational solid modeler, MacMod844. MacMod844 is a solid and

void modeling program used by the Department of Architecture, Computer-Aided Architectural

Design Department, as the fundamental method of studying and implementing concepts of two-

dimensional drawing, and three-dimensional solid visualization and representation, as well as

the application of thcsc concepts to architectural design. This program was written in part by

the author, and by other graduate students in the CAAD program, as a series of educational

exercises. The results of the MacMod844 solid modeler stem from research provided by Dr.

Christos Yessios, and by the completion of the exercises accomplished during a six quarter

sequence of architecture classes provided by the Department of Architecture.

xvi

CHAPTER 1

INTRODUCTION

In 1972, Nicholas Ncgropontc wrote "Computer-aided design cannot occur without

machine intelligence - and would be dangerous without it" (Ncgropontc, 1972). This early

insight to the possible introduction of knowledge-based design systems to architectural design

has led the way for many academic theories and applications. However, until recently, the

profession has greatly ignored the potential of such systems, relying on the utilization of

computer technology to aid in the production phases of the design process - mainly drafting.

More recently, the advances in computer technology, predominantly in the micro-computer

arena, has led to a greater understanding, representation, and manipulation of knowledge in a

manner which has made it possible to construct knowledge-based design systems capable of

aiding the designer in the early phases of the design process. According to R.D.Coync. "The

emphasis now is in finding methods of appropriating and rendering operable the knowledge

available to designers" (Coync, 1990).

Knowledge, for the purpose of this discussion, includes the process, declaration, and

state of having information pertaining to a particular entity or group of entities. It becomes the

representation of the ability to gain, apply, and state the behavioral attributes an object or entity

may possess. The interaction between an entity and the world, or between entities, is therefore

limited or constrained to the knowledge representing that entity. A constraint, therefore,

becomes the ability to limit the use, generation or manipulation of entities within the established

bounds of knowledge.

jI

2

This thesis explores the use of design knowledge with the intent of establishing a more

logical and efficient method of utilizing computers to assist in the design activity. A

prototypical application, CMod, is presented to support the fundamental applications of

constraint-based solid modeling, and to provide a visual representation of the concepts

presented. One such concept is the use of design knowledge to interactively constrain the

design space, the space in which design is allowed to emerge. By implementing this ability to

provide and utilize knowledge. it is possible to develop a constraint-based solid modeler for

architectural applications which provides feedback to the designer in "real time".

1.1 Overview

The goal of this application is to provide an avenue in which knowledge can be

obtained, synthesized, and utilized to constrain the interactive generation. manipulation and

behavior of geometric solid elements. By utilizing available design knowledge to constrain

geometric entities, it will be possible to bring a basic three-dimensional solid modeler closer to

the early stages of the design process, and allow a CAAD system to be more of an aid to the

designer.

Constraining the interactive design process can be illustrated by considering a

conceptual design of a building on a site which zoning regulations impose limitations to the

design. Initially, there are limitations to the site itself, boundaries which limit the breadth of

SITE BOUNDARY
- Establishes the initial spatial

constraint on the design space.

SITE DESCRIPTORS
- Establishes relationships between

the site boundaries and the world.

Figure 1. Preliminary site information

3

construction and descriptive symbols which establish relationships and adjaccncics. Typically,

there may be setback requirements for the front, side, and back yards, establishing a minimum

distance which a building may be placed with respect to the site boundaries. Figure 1, abovc,

illustrates this preliminary site information. There may be incremental requirements such as

I HEIGHT LIMITATION
-Establishes the initial design
volume for the design space.

SHADOW/SUNLIGHT RESTRICTION
- Establishes the setback for
maximum shadow limitations.

Figure 2. Supplemental site information

height limitations and sunlight restrictions. Figure 2. above, provides a graphic representation
of these secondary site restrictions. Additionally, legal constraints, such as right-of-ways,
may be imposed, further restricting the site. By applying these limitations upon a

geometrical entity, we have created a design space which contains knowledge about the
allowable design volume. An illustration of this design space with the imposed site restrictions

is found in figure 3.

DESIGN SPACE

DESIGN SPACE
- Resulting allowable design space

etb~ck after constraints imposed.
Rear Set)ac

t 'b k SITE LIMITATIONS
- Establish required setbacks, right-

n b of-way, and other site restrictions.

Right-of-wa Front Seth

Figure 3. Design space constrained by site limitations

4

Knowledge of the design space can then be impose,' on the interactive three-

dimensional solid modeling process, allowing only acceptable solutions to be generated and

manipulated within this allowable design space. Figure 4, telow, graphically illustrates the

results of such interactive modeling within the constraints of site design knowledge.

DYNAMIC MODELING
- Exploring the possible solutions

within the allowable design space.

Figure 4. Illustration of modeling within the design space.

The fundamental basis for this thesis resut s in this ability to constrain, with the use of

design knowledge, the generation, manipulation, and behavior of' geometrical entities. By

allowing the user to interactively identify and specify design knowledge, the interaction of

these geometrical entities reduces to constraint satisfaction in which the lower level decisions

are required to be met. Therclore. the benefit of such constraint-based modeling is that the

designer has imposed these lower level decisions at the conceptual stage of the design process.

and provides him with the oppurtunity to utilize the computer and design knowledge, early in

this process.

1.2 Application to Current CAAD Theory

One of the current goals of CAAD is to enhance the ability to design by aiding in the

design process. The architectural design process involves the analysis, synthesis, refinement,

and implementation of a set of requirements, into a viable design solution which satisfies those

goals (AlA, 1987). Current CAAD theory involves the modeling of, in terms of a computer

5

model, this process of design. Many academic theorists and practitioners have proposed

methods of modeling this process. Among them, two basic methods of modeling the design

process have emerged; simulation, which is a problem solving approach to dcsign in which a

design solution is postulated and then evaluated against the design goals for compliance, and

optimization, where the performance criteria, constraints, and decisions arc stated, and the best

possible design is produced. Both methods are briefly presented in order to juxtapose the

method which this paper is based.

SIMULATION DESIGN - DESIGN DFORMA CE DECISION DESIGN
OPTIMIZATION GOALS I OBJECTIVES VARIABLES VARIABLES SOLUTION

Figure 5. Components of the modeling process.

Both methods incorporate four major elements into the process, design goals, which

state the specific goals which the design is required to obtain, design objectives, which state

the specific elements the design must meet in order to satisfy the design goals, performance

variables, which state the specific variables which must acquire some values, or certain ranges

of values, which will satisfy the objectives, and decision variables which state the specific

assignment of values to the performance variables (Coync, 1990). It is the use of these

elements, and how they arc implemented, which constitutes the current theory of knowledge-

based design systems applicable to CAAD.

The simulation process involves the postulation of a solution to a design problem in

which the decision variables arc made. The performance variables arc determined from the

decision variables, and evaluated against the design objectives to determine whether the

solution meets the design goals. If it does, then the solution satisfies the problem. If it does

not meet (he design goals, the solution must return to the decision variable state, and the

decision variables must be modified. This model of the process proposes a solution to a given

problem, then evaluates it against the design goals. (Coyne, 1990; Mitchell, 1990)

6

SIMULATION PROCESS: (design postulated then evaluated)

STATE DETERMINE EVALUATE MEETS YES SATISFIES
DECISIONS , PERFORMANCE . DESIGN < DESIGN PROBLEM
VARIABLES VARIABLES OBJECIVES GOALS

NO

MODIFY DECISION VARIABLES

Figure 6. Flow diagram of the simulation process of achieving problem satisfaction.

The optimization process involves the generation of a Jesign solution from a search

through all of the possible states which meet the stated decision variables and performance

variables. This model of the process evaluates the design goals and variables, and provides a

theoretically optimal solution which satisfies the problem. (Coyne, 1990; Mitchell, 1990)

STATE DETERMINE ; POSSIBLE MEETS YES F SATISFIES-

DECISIONS ~.PERFORMANCE SOLUTION DESIGN POBE
VARIABLES VARIABLES STATES GOALS

CREATE

OPTIMIZATION PROCESS: (best-possible design) NEW STATE

Figure 7. Flow Diagram of the optimization process of achieving problem satisfaction.

The implementation of the Constraint-Based Modeler, chooses to model the design

process, not as a complete generator of solutions, but as an interactive tool in which the

designer can manipulate the proposed solution within the process to guide the solution to a

satisfactory conclusion. This method establishes the criteria in similar fashion to the

optimization model, that is prior to the introduction of a design solution. However, in

contrast, it does not search through the possible states, it limits or constrains the interactive

generative process to that of the design knowledge established.

7

ESTABLISH DETERMINE USFE SATISFIES
SATISFIE YES DESIGNDESIGN D,- PERFORMANCE WITH Y OS PROBLEM

OBJEC71VES VARIABLES _7 DESIGN

NO

INTERACTIVELY

YE

YES ESTABLISH
DECISION

VARIABLES

DESIGN CONSTRAJNT NoEFRAC

BJEC r~vES OPERA'TIONS JCIE

4 YES

INTERACTIVE CONSTRAINT PROCESS: (solution generated within constraint limitations)

Figure 8. Flow diagram of the interactive constraint process of achieving problem
satisfaction

The implication of this approach to the current CAAD theory centers around the

interactive use of the design knowledge during the conceptual stage ofldesign. The application

seeks to utilize this information interactively in a graphic and visual mode, introducing design

knowledge, and therefore constraints, to a three-dimensional solid modeler.

1.3 Historical Basis

The study and application of design knowledge to Computer-Aided Architectural

Design is not a new concept. The historical basis of this thesis relies on the foundations set

forth by many theories proposed over the past thirty years. Most notable arc the foundations

provided in three main areas: empirical studies, theoretical issues, and education. The area of

empirical studies, (Eastman, 1970: Foz, 1973: Hcnrion, 1974: Krauss and Myer, 1970;

Negroponte, 1970), focused on the development of models that account for the behaviors of

architectural practice, with specific emphasis on formalizing the design process. Theoretical

issues (Coyne, 1990; Freeman and Newell, 1971; Mitchell, 1990; Reitman, 1964: Simon,

8

1973; Yessios, 1987), focused on the development of a priori paradigms for design. Major

emphasis in this theoretical aspect was in representation of knowledge. The third area,

education, (Broadbent, 1973; Hanks, 1977; Jones, 1979; Wade, 1977) focused on the

development and advancement of design methodology, with emphasis on defining design and

how its related knowledge is used and how it should be practiced (Akin, 1986).

These studies pioneered the area of knowledge-based applications to CAAD. and

individually, provide a valuable contribution to the study of this field. Thcrcfore. it is essential

that the development of a constraint-based modeler with foundations ol knowlcdge application

take in consideration these studies. The implementation of a constraint-based solid modeler.

builds on those contributions in an effort to provide a functional, and workable, application of

design knowledge to aid in the CAAD development.

1.4 Goals and Expectations

The application of* design knowledge o the iuactactivc modeling process as illustrated

and presented, takes into account the work of early and current pioneers in the area of CAAD.

The goal of this thesis was to develop a constraint- 0atcJ solid modeler for architectural

applications which can be utilized as a tool for Compute-Aidcd Architectural Design by

allowing for the definition and implementation of specific design knowledge which constrains

the behavior of user definable three-dimensional geometric entities. The development of such a

modeler was to be an extension to the existing educational solid modeling program.

MacMod844, developed, and provided by the Department of Architecture. The Ohio State

University. The constraint-based solid modeler was expected to achieve four main objectives,

which when implemented, would achieve these goals.

The first objective, was to provide the ability to gcncratc, represent, and manipulate

three-dimensional geometric entities through the use of a graphical interfacc. This includes the

facilities to store and support geometric and topological editing features at the point, segment,

face, and volume levels. (Existing features of MacMod844 educational modclcr.)

9

Secondly, the implementation was to allow for the specification of design knowledge

applicable to user definable three-dimensional geometric entities such as solids or spatial

representations. This included the ability to define, modify, store, and retrieve constraints

upon the environment as well as the individual entities.

The third objective was to provide the ability to manipulate the three-dimensional

geometric entities in a manner which is consistent with the behavioral characteristics dictated by

the entity specifications. Thus, constraining the operations, scale, translate, and rotate, to the

design knowledge specified for the entity.

Finally, the last objective was to provide the ability to extract information from an

entity, which has been provided by the specification of the entity, and the derivation of

information from the specifications and geometrical data.

The primary expectation of this thesis is to contribute towards the development of an

architectural solid modeler, which has the ability to represent information about a specific

entity. as a loundation for design research, education, and practice. Four main goals are

expected to be attained in this research. One, to support the theoretical foundations which have

preceded this research. Two. to delineate and define the components of a constraint-based

solid modeler, including the representation of knowledge, problem solving process, and the

interaction between the designer and the modeler. Three, to implement and evaluate such a

modeler. And four, to provide a foundation for further research and education in the use of

knowledge-based systems in CAAD applications.

By achieving the four main goals set forth, the constraint-based solid modeler for

architectural applications provides a designer with the ability to utilize and apply a small

domain of design knowledge interactively in the generation and manipulation of architectural

elements, thereby, providing a dynamic and interactive modeling environment which is

behaviorally constrained.

The remainder of this thesis explores and illustrates the functional constraint-based

operations which were implemented in the modeler, a system overview and user's manual to

10

C.Mod, the application of the constraint-based solid modeler, the internal workings and

algorithms used to implement the constraint operations, applications of the working program,

extensions and future directions to be explored, and finally conclusions surmised from the

research and implementation.

CHAPTER 11

CONSTRAINT-BASED MODELING OPERATIONS

The realistic generation and manipulation of solids and spaces in an interactive

environment requires the use of specific information pertaining to the entities themselves and to

the interactive behavioral attributes between entities. To facilitate this realistic interaction of

entities, two types of information are required, physical and relational attributes. Physical

attributes such as representation, dimensional data, area limitations, volumetric requirements,

rotational attributes and spatial mobility, are applied upon the entity itself. Relational attributes

such as proximity criteria, containment characteristics, and associative attributes, arc applied to

entities which interact with one another. By applying this specific information, the interactive

solid modeling process is constrained and limited to the bounds established. The results o1 this

application of specific information or knowledge about an entity in an interactive solid

modeling environment is a constraint-based solid modeler.

Allowing for the definition and implementation of specific design knowledge which

constrains the behavior of user definable three-dimensional entities is critical to a successful

implementation of constraint-based solid modeling. A constraint-based solid modeler must,

therefore, provide four primary operational capabilities: 1) The ability to specify the design

knowledge applicable to user definable three-dimensional entities such as solid and spatial

entities. 2) The ability to modify, store, and retrieve the entity specifications provided through

knowledge specification. 3) The ability to manipulate the three-dimensional entity in a manner

which is consistent with the behavioral characteristics dictated by the entity specifications. 4)

The ability to extract, or query, information from an entity which has been provided by the

i'II

12

specifications of that entity. This chapter explores each of these primary operations in order to

illustrate the role each must play in the interactive modeling process.

2.1 Knowledge Specification

The foremost important ability of a constraint-based solid modclcr is to specify and

distinguish specific information pertaining to an entity. Information, or design knowledge

which is typically represented graphically, as illustrated in the figures below, must be specified

by the user, or read from a data base containing the required information, and made available to

the modeler. An interactive method of communication between the user and the system allows

the user to input specific design knowledge applicable to a specific entity, or to an environment

which is to be modeled. The modeler, once the design knowledge is present, can utilize this

information to aid in the process of interactive modeling by providing the lower level

satisfaction checking to ensure that the requirements set Forth arc met.

Space Sol d NoOffsa
Reclured

Sunlight
shaow

Height angle Height
Limitatons Limitations Obect

Fixed in
Setbacks Objec to Attract 3 Space

Setbackis " Simila Objects

Maximum Maxum Maximur Maximum
Length , Width Leingth . Width

Figure 9. Design knowledge of a space. Figure 10. Design knowledge of a solid.

2.2 Knowledge Manipulation

The specification of information, or design knowledge, is the initial step in conveying

the scenario in which the modeling environment is to be constructed. Once the specific entity

13

design knowledge has been provided, a constraint-based solid modeler must provide the ability

to manipulate that information. This includes the ability to modify, store, and retrieve the

entity specifications which have been specified. By allowing the user to modify constraints, or

information particular to a specific entity, the environment can remain dynamic in nature. This

flexibility provides a method of constraint resolution in which the user can choose to apply or

disregard a particular constraint during the interactive modeling process. Additionally, by

allowing a set of constraints to be stored and retrieved, a preset description of entities, or entity

types, can be applied to the modeling environment without having to specify the entire set of

constraints again (figure II and 12.)

offset A'4Paquired

Min'Max
Offset ~ Heigh Ofse

Brik equired Required

Heght Height Max Length

Min Length

Max Length

Min,)4 Min Length M Max Length
WKth Wdh

Figure 11. Constraints upon a single Figure 12. Preset constraints applied to all
entity and stored as a brick definition, subsequently generated entities.

To allow for this flexibility, two types of constraint knowledge are to be represented,

entity specifications, and system specifications. Entity specification is the set of

constraints/attributes which pertain to a specific entity. It is that set of specifications which

control the operations involving that entity. The second form is system specifications, or

system defaults. This set of constraints/attributes are what the system uses when a new entity

14

is created. Both sets are accessible to the user at any given time. By allowing this

manipulation of information, the user has the flexibility to control knowledge about a specific

entity and the system specifications.

2.3 Constraint Modeling

The purpose of a constraint-based solid modeler is to provide an environment in which

the designer can interactively generate and manipulate solid models for architectural

applications which follow behavioral patterns established by the specification of design

knowledge as constraints. Additionally, once the constraints have been established, the user

should be free to explore possible solutions within the constraint limitations, without having to

constantly check for compliance with a particular attribute or value. To accomplish this, three

levels of constraint modeling are required to be provided: entity , relational , and identification.

The entity level applies to the physical characteristics of the entity and relates to the generation

and editing of solid objects. Interactive relationships between entities make up the relational

level, and apply to the geometrical transformations of translation, rotation, and scale. The final

level of identification is required to distinguish the differences between entities, and provides

the ability to store and retrieve the constraint set. The lollowing discussion elaborates on each

of these levels, and includes an illustration of the major attributes which provide the ability to

interactively model constraints.

2.3.1 Entity Characteristics

Entity characteristics arc the specific physical attributes which the entity is required to

satisfy during the generation and manipulation of the entity in the three-dimensional modeling

process. The physical attributes provide a realistic representation of a narrow spectrum of

design knowledge upon a specific entity. For the purpose of illustrating the constraint-based

solid modeling process, five major physical attributes have been chosen: spatial representation,

15

dimensional attributes, spatial characteristics, rctational attributes, and mobility characteristics.

Although an unlimited number of descriptive information can be obtained and applied to the

generation and manipulation of geometric entities, these five physical attributes represent a

selection of primary characteristics which govern the creation of physical objects. The

following is a discussion of each of the five physical attributes.

2.3.1.1 Spatial Representation

The fundamental object description/constraint is found in the spatial representation

attribute. By denoting an object as a solid entity, the modeler must perform operations on that

entity as a solid. Thus, a solid is expected to behave as a solid entity, and a spatial entity is

expected to behave as a spatial container of other entities. The distinction between the two

representations lies in the ability to contain mass. Solid elements arc just that - solid - they

contain mass, and cannot be occupied by another entity containing mass. Spatial elements do

not contain mass, they arc composed of space, or a spatial void, and have the ability to contain

++Poe~fre faces W, ,Mo, of sot fy
Surfae Noros PonTIng -l8rd

SPACE 4 + V

+ + +

poefte feces mo ewSen of e..E L'_ I
Sur*ooe Nomals %n.tw Outward T's

SOLID

Figure 13. Representation of a solid Figure 14. Three-dimensional representation
entity and a space entity. of solids and spaces.

other entities such as spaces or solids. Figures 13 and 14 illustrate the physical and visual

differences between a solid and spatial entities. As a fundamental characteristic of constraint-

16

based solid modeling, this ability to distinguish between spaces and solids interactivcly

provides a strong foundation to utilizing design knowledge within an interactive environment

which allows immediate feedback to entity interaction.

2.3.1.2 Dimensional Attributes

Dimensional attributes constrain the generation of entities, specifically extrusion, as

well as the geometric editing features of the modeler. The application of dimensional data must

be capable of supporting editing of all topological levels- point, segment, face, and object. To

facilitate this characteristics in an interactive environment, a hounded box dimensional

restriction upon the generation and manipulation of the entity must be provided (figure 16).

The bounding box method maintains the dimensional information regardless of the effects of

3D transformations such as scale, rotation, or translation, and regardless of the topological

level on which the operation is being conducted (figure 17). Retaining the dimensional data in

this way allows the user to specify the minimum, maximum, and incremental dimensional

constraints upon a gcometric entity. Each of these values may be set and activated for the

width, height, and length attributes independently or in combination. Figure 15 illustrates the

minimum and maximum values establish a range of allowable values to be used during the

modeling process.

BOUNDING 6OX

Figure 15. Visualization of the width, Figure 16. Three-dimensional representation
length, and height dimensional criteria, of the bounding box and dimensional data.

17

Figure 17. Bounding box and solid entity in Figure 18. Replication of a solid entity

three space. in the width dimension.

Simply restricting the operations to maximum dimensional limitations does not ully

capitalize on the nature of' dimensional data. Modular construction, such as kitchen cabinetry,

utilizes dimensional data to indicate when another module should be generated. The cabinets,

-- for example. would split or replicate when they are extended beyond a particular dimensional

limitation. To support this type of design knowledge, the modeler must allow the user to
specify a replication threshold, and replicate the entity when generation or manipulation

extends beyond this threshold. With the replication feature disabled, the generation and

manipulation of the entity is constrained to the limits imposed by the minimum and maximum

dimensions provided. Incremental rubber-banding, scaling, and translation will b snapped to

the increment value provided. When the replication feature is enabled, however, the maximum

value becomes a threshold value used to invoke replication. Extending beyond this maximum

value will result in the creation of an additional element with the same constraints and

attributes, thus replicating the entity (figure 18).

2.3. 1.3 Spatial Characteristics

Spatial characteristics impose similar constraints to the generation and editing features

of the mc eler as do dimensional attributes. in addition to, or in lieu o, dimensionalvalue beoe hehl au sdt noerpiain xedn eodti aiu

18

attributes, spatial constraints of area and volume may be required. Providing spatial

constraints would limit, or restrict, the generation and manipulation of the entity based upon

minimum and maximum square and cubic units of measure, thereby allowing the definition of

room size in square units, or spatial size in cubic units (figures 19 and 20). A minimum value

would establish the smallest area or volume that entity may possess, and require the modeling

process to maintain this minimum value. A maximum value would establish the largest area or

volume that entity may possess, and would be used to limit geometric editing operations upon

that entity. Since most applications of spatial criteria utilize an orthogonal configuration, the

modeler must provide an option which allows the user to specify whether or not to constrain

the entity to this orthogonal continuity during transformations. A constraint-based solid

modeler could therefore all," interactive solid modeling of programmatic requirements

maintaining this inforr mz, ,.t during the process.

EENTItY EN Tn

HIEIGHT

AXSAREA of Entty EIHT VOLUME rEnt RyWE

Area Base area .i sotty ot

te reeetlce ne The baSsof Volure Are"o the b ae poon paallel

te etty stte s as tre Polygon fo to ther o le trees the he"gr

area caIculatons < perpendcular to the re ten5 late

Figure 19. An illustration of the area Figure 20. An illustration of the volume
characteristic, characteristic.

2.3.1.4 Rotational Attributes

Rotational attributes effect the geometric editing feature of rotation. This becomes

important when one considers, for example, the placement of entities which can only be

configured at right angles within a space. By constraining the rotational level and degree of

{
19

rotation which can he imposed during the geometric editing operations, these restrictions can

be represented in the interactive modeler. In order to facilitate this constraint two types of

specification must be allowed, level, or axis of rotation, and increment, the degree of rotation

allowed. Specification of the level of rotation would provide the selection and indication of

allowable rotation in three-space, and would include activation and limitation of each of the

three major axis. Indication of the rotation increment, in terms of minimum and maximum

values, would provide the allowable range of rotation from 0 to 360 degrees in right-handed

space (figure 21). In addition, the rotational increment would constrain the incremental

rotation about the selected axis. Thus, an entity can be restricted to z axis rotation at 45 degree

increments (figure 22). implementing this characteristic would provide an environment in

which entities can be constrained or limited to specified locations or configurations.

90
Ai~owae 0oe

y
00-9 "'

ci ,otacon45 99 Mac

'80 f4 0)

, 090 31f ,. •.- -
of rotvt o 1~~45 d990W

190 0
Al~ ~ ~ 31 deg M-dg

270

RatOWn a00A the Z mm

Figure 21. Visualization of the limits Figure 22. Example of an object rotated
on the x-y reference plane. about the origin, constrained to limits.

2.3.1.5 Mobility Characteristic

Mobility characteristic's establish the degree of interaction the element will exhibit

when acted upon by another element and provides the ability of rigid placement within three-

dimensional space. A primary use of the mobility characteristic is to fix the location of an

entity so that the interaction between other elements will not cause the entity to translate from

20

its position. Once an object is placed in the modeling environment, it may become necessary to

fix, or freeze, it's position, as in the placement of a wall, stair, column, or any construction

component. A fixed entity therefore becomes an obstacle which, when interacted upon by

other entities, will restrict, or limit there movement (figure 23).

Interacton with a translating Results
Entity end an entity with fixed

Mobllt.

Fxed onilty

ReAn ent Pnt m lReerncs potni rt ra cc.tp enFtrty .

Figure 23. Illustration oif an interaction between a translating entity
and an entity with fixed mobility. A. Indicates the position prior to
translation, illustrating the path of travel. Note the the object must
travel around the object. B. Indicates the result of the interaction.

An entity with a mobility characteristic offree. however, is not confined or restricted to

a particular location in three-space. Free mobility enables the entity to respond to the

interaction of other elements in accordance with the expected behavioral patterns established

through the specification of other constraints (figure 24). The mobility characteristic does not

effect any geometric or topological generation or editing feature directly. It does, however,

effect the resultant activity from associative relationships and manipulation of' other entities

which will be discussed in section 2.3.2.3.

Used in combination with the spatial representation characteristic, the mobility

characteristic is the second most important feature an interactive constrain t-based modeler must

possess. These two characteristics alone can model, through direct response in real time, the

interaction of solid objects in three-dimensional space.

4

21

Inteict on with a trartlating Resultst

Entity and an arIty wtth I'aM

Mr Maily

SNitoement

Refre~ce ontReferenc Poser /
A. Translting entrty B.

Figure 24. Illustration of an interaction between a translating entity
and an entity with free mobility. A. Indicates the position prior to
translation, illustrating the path of travel. B. Indicates the result of
the interaction.

2.3.2 Relational Characteristics

Relational characteristics are attributes an entity possess which indicate how that entity

is to interact with other entities. Three relational attributes, proximity relationships,

containment relationships, and associative relationships, used separately, or in combination,

are required in order to provide additional behavioral constraints upon the manipulation of the

entity within the modeling environment. The following is a discussion of each of the three

relational characteristics.

2.3.2.1 Proximity Relationships

Proximity relationships establish a zone around, for solid entities, and within, for

spatial entities, the entity which provides and acts as a buffer, or clear zone between the entity

and any other entity. This zone provides the minimum distance in which other entities may

encroach upon, as well as the distance criteria for proximity detection and activation of

associative responses (refer to section 2.3.2.3). A buffer zone is created by establishing an

offset from the bounding box based on the width, length, and height distance from the entity,

and is to maintained regardless of the geometric transformations applied upon the entity (figure

25). Therefore, a specification of an offset along a particular edge, such as the width edge,

22

must be maintained throughout the modelig process. The use of a buffer zone, or offset,

allows the modeler to represent non-physical entities such as distances between floors, or can

act as physical representations such as mortar between brick entities. A modeler can therefore

act as an abstract representation of design elements and can provide the ability to use design

knowledge in an early stage of the design process.

Proximy OetedcOe
tnterseCt c. two
proximry buffer zones

, @ Maxmu,, cicew~e

hdlstance Sould

LetVh WCth h enter thS uer zone

A. B. C.

Figure 25. An example of the proximity zone and it's relationship
with the entity. A. Illustrates the buffer zone around the entity. B.
Illustrates the offset created between three entities. C. illustrates
%hen proximity detection occurs.

2.3.2.2 Containment Relationships

Containment establishes the relationship between dissimilar spatial representations. A

heiarchical relationship can establish constraints which effect the extrusion, scale, rotation, and

translation of entities, and will restrict such operations on subordinate entities to the limits of

the bounds of the spatial entity (figure 26). This has the effect of enclosing entities within

spaces, such as the design space illustrated in chapter I, and effectively constraining the

interaction and manipulation of entities within that space. Depending upon the spatial

representation given to an object, the modeler should provide several options to the user.

These options must include no containment, solid contained by a specified volume, or a spatial

i Lh

23

entity which contains user specified solid entities. No containment allows the entity to be non

restricted in any space. If containment is desired, the entity must belong to a spatial entity, and

thus contained by that entity, or contain solid entities, depending on the spatial representation.

It is important to note that in the event that a solid entity has no containment relationship

between a spatial entity, the solid entity should have complete freedom to penetrate or exceed

the bounds of the spatial entity, and thus is not be restricted or contained by the spatial entity.

Sold5 otrty m nstrwwnd
SPACE S PACE to the imis of the spatiat

~~S O ~ OLID ~ ~

SOLID ENTITIES HIEARCHICAL STRUCTURE
CONTAINED BY A SPACE OF CONTAINMENT RELATIONSHIP

Figure 26. Example of the containment relationship and it's
interaction between entities.

2.3.2.3 Associative Relationships

Associative relationship establish the response an entity will exhibit during the

interaction between itself and another entity. Utilizing an offset tolerance from the proximity

zones for each entity, the interaction between two or more entities is affected by their

associative relationship indicated, and respond in one of three actions, no response, repel or

back away, or attract and attach. No relationship would indicate that there is no inherent

association required for that entity. A repelling relationship would indicate that the object will

oppose, or repel another entity encroaching within the tolerance. Attracting relationship

indicates that the object will attract, or try to attach itself, to another object encroaching within

the tolerance.

24

The associative relationship utilizes the mobility characteristic of the secondary entity,

or the entity which is being acted upon, as a basis to determine the type of response the entity

is to exhibit. If no associative relationship between the entities is desired, the entities must

behave in a manner which is consistent with solid objects. However, if an association is

established, and depending upon the mobility definition of the secondary entity, the associative

response will be enacted by the interacting entity or by the secondary entity. The associative

relationships eftect all transformations, sca!e, rotation, and translation, interactively, and must

and TransLated

Transiating Entity

Rele'ence Paint

A. B.

Figure 27. Example of the attract association and secondary entity with
free mobility. A. Indicates the position prior to translation, illustrating the
path of travel. B. Indicates the result of the interaction.

FIXED Molfry Chratenrstic RESULTS Entiny Attnhed

P "T

ran
sltin

llwe

Reiteraioe Pcxit

A. ,TrWWW E nry B.

Figure 28. Example of the attract association and secondary entity with
fixed mobility. A. Indicates the position prior to translation, illustrating
the path of travel. B. Indicates the result of the interaction.

25

FREE Mobility Charactensmtc Entity Repelled
RESULTS and Displaced

DOspiaomentf

Reltnce Poin

A EnB.

Figure 29. Example of the repel association and secondary entity with free
mobility. A. Indicates the position prior to translation, illustrating the
path of travel. B. Indicates the result of the interaction.

FIXED Motxiny CharaCternsic

RESULTS Entrty Unchangecl

Rteference Point

?Tr nsiang Entiy

A. Trar=hto petE restrited B.

Figure 30. Example of the repel association and secondary entity with
fixed mobility. A. Indicates the position prior to translation, illustrating
the path of travel. B. Indicates the result of the interaction.

provide an immediate visual feedback to the user during the modeling process. When any of

these operations are performed, and the resulting activity causes the entity to encroach upon the

tolerance of another entity, the entity will behave accordingly, depending upon the mobility

characteristic of the entity. Thus an entity with an associative relationship of attract, mees a

fixed entity, the entity will snap to the edge of the secondary entity. In the event that the

secondary entity was free, it would snap to the edge of the primary entity (figures 27 and 28).

26

For the repel association, an entity which meets a fixed entity will be repelled, or pushed away

from the secondary entity. Conversely, if the secondary entity was free, it would he repelled,

or pushed away from the primary entity (figures 29 and 30).

2.3.3 Identification Characteristics

The identification attribute allows the unique identification of a set of constraints which

have been established for a given entity. This type definition attribute is required when storing

and retrieving constraint information.

2.3.3.1 Type Definition

This is a unique identifiable descriptive attribute associated to the set of constraints

representing an entity. The specification of a type definition to a specific set of constraints

provides the capability to store and retrieve the entire set of constraints will a single identifying

macro (figure 3 1). By allowing the set of constraints to be idcrtilicd as a single type

definition, the set of constraints can be created and stored once. and then retrieved and

assigned to entities with a single reference indicating that type. This ability to assign a

complete set of constraints with a single reference allows quick and efficient use of the design

knowledge about entity types without specific knowledge about all the particular attributes

required to represent that type.

Office 3
Off ice 2Office 1

Lobby Office 6
-- Office 5

Service Corridor Office 4
Public Toilets

Building Entrance Reception

Building Envelope

Figure 31. An illustration of the type definitions.

27

2.4 Knowledge Query

The last of the primary operations involve the ability to extract or query the modeler for

information pertaining to a specific entity. This specific knowledge pertaining to an entity must

be supported in two forms, defined and derived. Defined information is specific knowledge

pertaining to an entity which has been defined or stored as a set of constraints. This type of

information should be readily available in the interactive modeling process and accessible

without excessive disturbance to the process. The second type, derived, should allow the user

to retrieve specific knowledge about the entity which has been derived, or determined from the

design knowledge specified and the geometric data of the entity. Information pertaining to

derived knowledge includes square footage, volumetric data, actual dimensional data, and

location data. This form of communication between the user and the system would allow

immediate checking and verification of the design knowledge relating to any specific entity in

the modeling environment. In addition, it allows the user to question the response of the

constraint-based solid modeler, and determine why a particular action was taken.

2.5 Direction

From the discussion and illustration of the primary operations which should encompass

a constraint-based solid modeler, it is evident the use of design knowledge in combinations, or

separately, provide the designer with a valuable tool in the design process. This tool can

provide the user with the ability to generate and manipulate design knowledge to dynamically

constrain, with realistic information and results, the process of solid modeling. The interactive

generation and manipulation of solid elements within design knowledge will allow an efficient

and expedient method of spatial, or mass. modeling and would be able to provide a powerful

foundation to schematic and conceptual design.

The next chapter introduces C.Mod, an prototypical interactive constraint-based solid

modeler which provides a demonstration of the viability of many of the concepts presented.

CHAPTER III

CoMOD - SYSTEM OVERVIEW AND USER'S MANUAL

The prototypical constraint-based solid modeler, C.Mod, was written and developed as

an extension to the MacMod844 shell provided by the Department of Architecture, The Ohio

State University, and currently runs of the Apple® Macintosh® platform. CMod provides an

environment in which the designer can interactively generate and manipulate solid models for

architectural applications which follow behavioral patterns established by the specification of

design knowledge as constraints. Additionally. once the constraints have been established, the

File Edit Height Views Modes Options I

CoMod

Figure 32. C.Mod prototypical application.

28

29

user is free to explore possible solutions within the constraint limitations, without having to

constantly check for compliance with a particular attribute or value. The following chapter

includes an introduction to the C.Mod prototypical application, an overview of the menu and

command structure, a brief discussion of the basic capabilities of the solid modeler, and a full

description of the constraint-based operations. The goal of this chapter is to provide the reader

with the interface, characteristics, and use of CoMod.

3. 1 Introduction to C.Mod

C*Mod is an interactive constraint-based solid modeler which predominantly

communicates with the designer in a manner which is consistent with the way most designers

communicate, graphically. A user has the ability to gcncratc and manipulate solid elements

graphically, with the use of the mouse, and can visualize the results interactively. This section

introduces C.Mod, discusses how to activate the program, and illustrates the navigation

through the menus, icons, and windows utilized by the application.

3.1.1 Activating the program

C.Mod utilizes the basic method of program activation suitable for the Apple®

Macintosh® operating system. It is assumed that the reader is familiar with this operating

system, and is comfortable with the point, click, and drag method of mouse communication.

The program supports three icons used to represent specific information; application icon,

project files, and constraint types (figure 33). C-Mod is started by double clicking the

application icon.

A. CoMod B. project.file C. definition

Figure 33. C-Mod icons. A) C*Mod application, B) project files, C) constraint types.

30

3.1.2 Graphical Environment

Upon start-up, the program will display the graphical environment and is ready to

begin a session. Since there arc a number of unique features to C-Mod, this section explains

the graphical environment and discusses the navigation of the screen.

C-Mod consists of four basic parts, a menu bar, a graphic window, a message

window, and a tool box (figure 34). The menu bar provides access to the features and

operations of the program. The graphic window provides the visual communication between

the user and the application. It consists of a reference plane,which serves as a platform, or

drawing surface, and the three major axis, which serve as Cartesian coordinate references to

three-dimensional space. The third basic element is the message window used to communicate

textural information. The current cursor location is indicated in this window. The last major

clement is the tool box. The tool box provides access to specific features of the application

based on the current active mode of operation.

Menu Bar Ne Edit Height Uiews Modes Options
[od

Reference Plane

Z Axis -Z

X Axis

Y Axis

Cursor

Tool Box

Graphic Window -2

Current Cursor Location x -600 0 -1320 Z 00 Kenneth L Tobin. AIA

Message Window -, g

Figure 34. C'Mod graphic environment.

31

3.2 Overview of the Menu and Command Structure

The primary form of communicating instructions, or commands, to the program is

facilitated through the use of the menu bar (figure 35). The menu bar provides seven pull

down menus with which the user can select the various options and modes of operation

available. The pull down menus include the apple, file, edit, height, views, modes and an

options menus. An overview of each of the menu items is presented to briefly introduce the

user interface, and to illustrate the options or modes which arc available under each menu.

41; rie Edit Height iews Modes Options W1T

Figure 35: The C-Mod menu bar.

3.2.1 The Apple Menu

The 6 menu contains the About Constraint Mod... command which displays a

dialog box with a brief description of the C-Mod application. This dialog box is purely

informational, and does not serve any other purpose in the modeler. To dismiss this dialog

box, simply click anywhere within the box. In addition, this menu allows the user to utilize

the mutlifindcr, if active, to access other programs, and allows access to desk accessories

which are currently loaded in the systems folder Figure 36 illustrates a cut-away portion of

the apple menu. Figure 37 illustrates the dialog box which is displayed when About Constraint

Mod is selected.

AbotConsn Mo- CON TINT-BASE SOL0 MODELER

'Hirn Clock ARCHITECTUAL APPLICATIONS

rekuletor 1 Thosi$ OlOulopsd In part bV KIn Tobin
tnes 2.1 OR- ARCH 844.04 - Winter and Spring 1991

Figure 36: Apple Menu. Figure 37: About Constraint Mod dialog box.

32

3.2.2 The File Menu

The File menu provides general file processing operations for the application (figure

38). These include the ability to retrieve and store the project files, as well as quitting the

application. As previously mentioned, there are two file types used by C-Mod, project files

and constraint type files (figure 39). The file menu provides access only to the project files.

This is important to note when storing information. Project files contain all information

pertaining to a current scene, or environment. Whereas, only constraint type definitions arc

stored in the constraint type files (rcfer to section 3.4).

toad... Retrieves a stored file

See Saves the current solid
" "objects and constraints

Print Setup... project .file definition
Print

Quit .t t Quits CMod application

Figure 38: File Menu. Figure 39: File icon types.

The Save item activates the standard file dialog box (figure 40), which prompts the

user for a file name. In the event (hat the name specified matches a file which exists, the user

will be prompted to change the name or rewriting over the existing file. The file saved contains

all of the information required to create the scene, including the object data structures and the

constraint data structures.

The Load item activates the standard file dialog box (figure 41), which prompts the

user to select a file from the listing of available files. The user can select the desired file by

double-clicking on the file name, or by clicking once on the name and selecting open. In the

event the file desired is not found in the current folder, additional folders can be view by

I

33

selecting the top file descriptor and dragging down the list of heiarchic ii files. Access in this

mode is limited to files created only by the save item above while in this application.

The Quit item terminates the program. Note that quitting the program prior to a save

will not prompt for a decision to save or not. The program does not automatically save the

current set of data.

.od e1 [od Frles
Tobl 0 Tobin

Sau* Enulornmenl As: O

Figure 40: Save file dialog box. Figure 41: Load file dialog box.

3.2.3 The Edit Menu

The Edit menu provides the means of controlling how the modeler is to perform in

three-dimensional space (figure 42). The primary means fbr this is through the selection of a

reference plane which is used during the generation and manipulation of objects. In addition,

the edit menu allows the user to clear the entire screen to begin a new session. The selection of

Clear Mem will erase all items form the graphics window. Note that the undo command is

not active, and will not perform any operations.

Establishes the x-y axis U X Establishes the y-z axis
as the current reference .as the current referenceplane. M V Plan

Y 2 Plane* plane.
Establishes the x-z axis N . Pln Clears the active memory,
as the current reference C th ati mmow
plane. Clear Men; and graphic window

Figure 42: Edit Menu.

34

The items X-Y Plane, Y-Z Plane, and X-Z Plane, set the current active reference

plane accordingly. This is the controlling plane of reference for the generation, and

manipulation of entities within a three-dimensional space. In other words, if the active plane is

set to x-y, drawing a line in the three-dimensional environment will take place on the x-y plane.

This becomes important during geometric operations such as translation, which will perform

the operations parallel the active reference plane. To aid the user in distinguishing the which

plane is active. CoMod displays a yellow grid indicating the plane of rctefrcncc (figure 43).

Figure 43: An illustration of the reference planes viewed from 45-45 angle. A) Illustrates
the x-y plane. B) Illustrates the y-z plane. C) tllustrates the x-z plane.

3.2.4 The Height Menu

The Height menu provides a means of establishing the height, or the perpendicular

distance form the reference plane (figure 44). This menu provides the specific height value in

support of generation operations. The values, ranging from 24 units to 240, establish a fixed

positive distance, and arc consistent with the grid spacing indicated on the reference plane.

24

47 -- Height values used by the
96 system during the extrusion

Check indicates the current - i20 process. Values are generic
active height value. 144 units and represent one

19 increment of the grid spacing
216
240

Figure 44: The Height Menu.

35

3.2.5 The Views Menu

The Views menu enables the user to view the three-dimensional modeling world from

a variety of positions (figure 45). By selecting the desired view r,;%ci, the application will

regenerate the scene from the specified angle, and will allow interactive modeling from that

perspective. The menu provides three methods of viewing the scene, as an axonometric

projection, as a plan, or as an elevation.

Check indicates the current Sets the angle of view
view angle.-- P . //accordingly.

135 45
-135 45Set the graphic window -'5 45

to plan view. 30 60
60 30
80 20Sets the graphic window ' H V iew Sets the graphic window

to an elevation with x as --- V Mew to an elevation with y as the
the horizontal axis. H 2 Mew horizontal axis.

Figure 45: The Views Menu.

The axonometric views arc the first seven selections in the menu, and are indicated by

the numerical descriptions. The values stand for the degree of rotation about the z-axis and x-

axis respectively. To obtain a plan view, the selection of the x-y view will provide a projection

of the scenc with a line of sight along the z-axis. The elevations are viewed by selecting the y-

i view or x-z view. Figure 46 illustrates various views of the reference plane.

'

-

--

Figure 46: The effects of the view command on the reference plane. A) 45-45
axonometric view, B) X-Y plan view, and C) 30-60 axonometric view.

36

3.2.6 The Modes Menu

The Modes menu provides the user a method of activating the desired operations

available in CMod (figure 47). CMod currently supports ten modes of operation. These

modes include two-dimensional drawing, thrce-dimcnsioral extrusions, three-dimensional

convergence, three-dimensional objects of revolutions, geometric editing, topological editing,

texture mapping, void modeling, color surface shading, and constraint manipulation. The

following is a brief discussion of each of the operation modes. In the event that more

information is required, section 3.3 elaborates and illustrates each of these operations.

Enables 2D drawing mode Enables 3D solid model

Enables 3D solid model generation by extrusion.

generation by convergence. Enables 3D solid model
A- eole generation by revolutions.

Activates geometric editin Revolve A-capabilities G-E it
c-Edit -- Activates topological editing
Tetures

Enables surface texturing. Uoic Model capabilities.

Enables surface rendering wt.-ModiryI Enables Void model construction.
with a point light source. store .eRetrieve Ty

Constraint Mode submenu. over Activates the Constriant Mode.
see section 3.4.

Figure 47: The Modes Menu.

The basic operations of 2-D. Extrude, Converge, and Revolve, make up the generation

operations of CMod. With these operations the user has the ability to create two-dimensional

and three-dimensional forms. The 2-D mode of operation provides the ability to generate two-

dimensional objects on the active reference plane. This mode allows line, and polygon

drawing, and is used to aid in the generation of objccts of revolution. The Extrude mode of

operation provides the ability to generate three-dimensional objects from a base drawn on the

active reference plane. Solid objects are generated in this mode. Converge is similar to the

extrude mode in that it generates three-dimensional objects from a base. However, the

37

converge mode extrudes the object to an apex point at a height determined by the height menu.

This mode allows the creation of pyramidal solid objects. Revolve provides a method of

object generation termed objects of revolution. This mode of operation is performed on a pre-

generated two-dimensional object, and will generate a solid object by sweeping the form about

an axis. In this mode a sphere or torus can be generated.

The operations G-Edit, T-Edit, and Constraints, provide editing featuics required to

control and manipulate an object in three-space. G-Edit, or geometric editing, enables the

transformations and reformations of an entity in three-space. Editing in this mode include

point, segment, face, and object translation, as well as scale and rotation at the object level. T-

Edit, or topological editing, enables the insertion and deletion of points and segments into the

object itself. Constraints provides the user with the ability to specify and manipulate design

knowledge. Refer to section 3.4 for a complete description of this mode.

CoMod provides two methods of rendering the object created, texture mapping, and

surface shading. Textures allows for the application of surface textures to be applied to the

object. Textures include cross-hatching, stone, brick, and stipple. In addition to textures,

Colors provides a method of surface shading the object with a point light source. The effects

of each is to provide a more accurate visual representation of the object being modeled.

A final mode of operation allows the creation of building elements from the generation

of two-dimensional void representations. Void Model allows the generation of a plan in

which doors and windows can be added. From these two-dimensional representations, 'he

user can create three-dimensional building models, as well as solid roof objects.

3.2.7 The Options Menu

The Options menu selection provides various options to the user to aid in the use of

the modeler (figure 48). These features aid in the drawing, visualization, and manipulation of

the object in the three-dimensional environment. Snap Line will snap the mouse selection to

38

the next half increment of the reference grid. This allows direct placement of objects and

points without precise specification. Hide Back Face will render the scene with hackfaces

eliminated from view. Show Light Source will illuminate the scene and render the objects

with the appropriate surface color. Both options provide a visual enhancement to the modeling

scene. Apply Constraints provides the user with the option to restrict the generation and

manipulation of the three-dimensional environment to satisfy all constraints specified. With

this option selected, the solid modeler becomes a constraint-based solid modeler. A final

option, Show Bounding Box, is used in conjunction with the Apply Constraints option.

This option renders the bounding box of the object, and color codes the edges to indicate the

dimensional data used by the constraint mode.

Snaps the mouse selection

Renders the scene wit t to the half increment of the grid.
backfaces eliminated. f,, Linebhcke em d He ack Facel Renders the scene with surface

IShow Light Source { hdn ehius,ply ons#traints shading techniques.
Applies the constriants set .,hondinho4t

on the modeling environment Renders the bounding box
representation of the object.

Figure 48: The Options menu.

3.3 Discussion of Basic Capabilities

To gain an understanding of the basic capabilities of CeMod, it is appropriate to discuss

each of the modes of operation in greater detail. This discussion will illustrate the basic

features, concentrating on the modeling capabilities, and will provide the reader with a better

understanding of the overall expectations in respect to the user interface, the various modes of

operation, and the diversity found in throughout the application.

Prior to the discussion of each of the basic modes of operation, it is necessary to

understand the basic method of graphical interface with the system. As figure 49 illustrates,

the graphical enviroaiment is controlled through the use of the mouse. Lines are drawn simply

39

by pointing at the beginning location, pushing the mouse button, dragging the mouse to a new

location, and again pushing the mouse button to complete the line segment. Other operations,

such as primitive generation, extrusions, convergences, and geometric editing, require the

mouse button to be depressed while moving about the graphics environment. This method of

point, select, drag, and release, is prevalent throughout the modeler, and is utilized by every

mode of operation.

-X Y

Figure 49: Basic user interface in the graphical environment.

From this point, the reader should be aware of the CoMod environment, the menu

command structure, the file structure, and the basic operational interface. Further discussion

on these topics can be found in sections 3.1 and 3.2 of this chapter. The following section

presents each mode in the order found on the menu. The icons presented are the ones found in

the tool box after selection of the appropriate mode of operation. A brief discussion of the

icons, as well as an example of the results produced are provided to illustrate the performance

expected within each mode of operation.

3.3.1 Two-Dimensional Drawing

Basic line and polygon drawing can be performed in C-Mod under the 2-D mode of

operation. In this mode, the tool box contains eight primitives (figure 50). By selecting any

40

one of these primitives, the user has the ability to generate two-dimensional objects. The 2-D

mode is seldom used for most of the modeling process. However, it is required when creating

objects of revolutions such as a torus or sphere.

A -'-----Three-sided polygon primitive.

* "- Four-sided polygon primitive

-Four-sided polygon primitive diamond. b drw

o --- Six-sided polygon primitve. tedrin

0-4--Eight-sided polygon primitive. Hexagon drawn line'mitive tool.

"--- Circle, eighteen-sided primitive. with the Six-sided.
primitve tool.

'I 4---Single line primitve.
AV *- Double line primitive.

Figure 50: The tool box of icons in the Figure 51: An example of drawing in
two-dimensional drawing mode. the two-dimensional drawing mode.

3.3.2 Three-Dimensional Extrusions

The most fundamental mode of operation in the modeler is that of extrusion.

Extrusions provide a quick and efficient meth, ,f gercrating three-dimensional entities within

the modeler. Upon selecting the Extrude mode of operation, the system will display the

available primitives in the tool box (figure 52). By selecting any of these primitives, the user

has the ability to generate solid objects using the boundry-representation method of solid

modeling. Figure 53 illustrates an example of two solid objects generated in this mode. Note

the objects are surface rendered to provide a visual distinction of a solid element. With the

show light source option disabled, the modeler will display the objects as wire-frame

representations of the object.

41
A --- Three-sided polygon primitive. Wall created with the~double line tool.

o '- Four-sided polygon primitive

• - Four-sided polygon primitive diamond.

o .- Six-sided polygon primitve.

0 -. Eight-sided polygon primitive.

o ---- Circle, eighteen-sided primitive.

. -- Single line primitve.

• -Double line primitive.

I -Open Box Primitive.

- Closed Box Primitive.Eo tcir ,_ ~ ~Elongatd cylinder. !

created with the
circle tool.

Figure 52: The tool box of icons in the Figure 53: An example of creating
Extrude mode. solid objects in the extrude mode.

A -- Three-sided polygon primitive.

o "- Four-sided polygon primitive onverged object created

<C - Four-sided polygon primitive diamond. w the Six-sided polygon
primit

0 .-o Six-sided polygon primitve.

0 --- Eight-sided polygon primitive.

0 *- Circle, eighteen-sided primitive.

rt!Converged obje eated
with the Circl rimitive.

Figure 54: The tool box of icons in the Figure 55: An example of creating
converge mode. solid objects in the converge mode.

3.3.3 Three-Dimensional Convergence

The converge mode is similar to the extrude mode in that it creates solid objects from a

selection of primitives. However, in this mode of operation, the top face of the object is

42

created at an apex point which results in a pyramidal structure. Upon selection of the converge

mode, the tool box will display the available primitives used to generate converged objects

(figure 54). In a manner similar to the extrusion mode, the user can easily generate the

pyramidal solid objects. Figure 55 illustrates an example of two solids generated through the

converge mode of operation. Once again the objects have been surface rendered to illustrate

solidity.

3.3.4 Three-Dimensional Objects of Revolution

Another method of generating solid objects is through the revolve mode of operation.

This mode allows two-dimensional objects to be used as templates to create solid objects of

revolution. Upon selection of the revolve mode, the tool box with the four options will be

displayed (figure 56). In order for this operation to generate an object of revolution, a 2D

primitive must be present in the graphic window. After selection of the 2D object and an axis

of rotation, the modeler will generate the solid objects. Two examples arc illustrated in figure

57, one of a torus, and one of a sphere.

Full torus generation.

-- Partial Torus generation.

11h *--Full Sphere generation

- Partial Sphere generation

Torus rendered with
faces reversed to
illustrate interior.

Sphere created
with revolution
operation.

Figure 56: The tool box of icons in tht Figure 57: An example of creating
revolve mode. solid objects in the revolve mode.

43

3.3.5 Geometric Editing

Geometric editing allows the modification of the geometry, or location, of any

topological level, point, segment, face, volume, of an object. In this mode the user can

translate, scale, rotate, and reform the object or parts of the object, along the active reference

plane (figure 58). The results are displayed interactively as the mouse moves over the screen.

This allows the object to "rubberband" or move as the mouse moves. Figure 59 illustrates a

segment being translated along the x-y reference plane.

Moves a selected point. Aometri to

--- Moves a selected segment.

l ,--Moves a selected face,

- Moves a selected object. ~Anj.ect during

1 ---- Scales a selected object. s "i

A"1
*-- - Rotates a selected object.

4 ,*-Single reformation of an object.

e[u igle reformation of objects

[W -Activates the bounding box description.

The results of
geometric editing
of a segment

Figure 58: The tool box of icons in the Figure 59: An example of editing
g-edit mode. solid objects in the g-edit mode.

3.3.6 Topological Editing

Topological editing allows the user to modify the physical structure, or topology, of an

object. This type of editing enables the insertion or deletion of points and segments into the

face or vertices of an existing object. By selecting the t-edit mode, the tool box will display a

selection of operations which will perform these functions (figure 60). After selecting an

44

operation, the user selects the desired location for the insertion or element for deletion. In the

event a valid selection was made, the system will perform the requested operation. Figure 61

illustrates an insertion of a segment into the face of an object. The segment has been translated

to illustrate the existence on the face of the object.

Inserts a point into the object. Object prior to

Inserts a segment into the object. .X pological editing.

Not used.

Not used. erting a segmentNt ue into" face of an

- Deletes a point from the object. objct.

Deletes a segment from the object.

Not Used.

X Deletes an object.

Subsequent
geometric editing
of the insertedsegment.

Figure 60: The tool box of icons in the Figure 61: An example of editing
I-edit mode. solid objects in the t-edit mode.

3.3.7 Textures

Textures allows an enhanced visual representation of the solid objects by rendering

visible surfaces with an architectural pattern. This form of surface mapping provides a few

basic rendering capabilities to the solid modeler such as cross-hatching and brick patterns. The

tool box (figure 62) illustrates the various patterns available to the user. A user can apply a

texture pattern to the visible surfaces by selecting the desired pattern and then selecting the

object to he rendered (figure 63). Since this is only a visualization technique, the patterns and

renderings, are not stored with the object, and subsequent manipulation of the entity, or any

operation which refreshes the image, will cause the pattern to be erased.

45

-oVertical hatching texture pattern.

-Horizontal hatching texture pattern.

- Cross hatching texture pattern.

Brick texture pattern.

Parquet texture pattern.

Slanted hatching texture pattern. the brick pattern.

Stipple hatching texture pattern.

Irregular stone texture pattern.

Irregular cut stone texture pattern.

"*---Concrete texture pattern.
Block textured wit /

the irregular satern.

Figure 62: The tool box of icons in the Figure 63: An example of rendering
textures mode. solid objects in the texture mode.

..- Create void model. Solid hip f model
created from XJJ l- Move point or segment. the void model.

*-- Not Used.

.4-- nsert window.
l -Insert door.

(4--Delete wall, window, or door.

t -- Create a solid building model.

S.- Specfy the height of the roof points.

S--- Create a solid roof model.

~Void model of a hip roof.

Figure 64: Tlhe tool box of icons in the Figure 65: An example of generating
void model mode. a two-dimensional void model and a

solid roof element from the void.

3.3.8 Void Modeling

The void modeling mode enables the user to generate and manipulate the axial skeletons

of a two-dimensional void representation. A void model differs from a solid model in that it

46

defines an enclosed space. A wall, or enclosure is generated by deriving parallel lines to the

axial skeleton. This representation allows the efficient generation of architectural plans which

can be modified with the insertion or deletion of windows and doors as suited. Utilizing the

void representation of a plan, a solid object, or building, can be generated, complete with the

window and door openings. Additionally, the modeler has the capabilities to generate roof

entities from the same two-dimensional void model. Figure 64 illustrates the tool box after

selection of the void mode of operation. An example of the two-dimensional void model and a

solid roof entity arc illustrated in figure 65.

- Grey surface shading. Rbjecets surface shaded.

R --- Red surface shading.

m --- Green surface shading.

B -*-- Blue surface shading.

- I-- Cyan surface shading.

M -*--Magenta surface shading.

Y --- Yellow surface shading.

V *.-- Visual depth sorting of faces.

- - Light source.

C -- Color picker.

Light source use
establish ligh ngle.

Figure 66: The tool box of icons in the Figure 67: An example of rendering
colors mode. solid objects in the colors mode.

3.3.9 Color - Surface Shading

Surface shading provides the visualization of solidity. In the color mode, the user has

the option of sclecting and rendering the surfaces of objects. The colors available are indicated

in the tool box and allow the assignment of different colors to different objects (figure 66).

Unlike the texture option, colors are stored as part of the internal specifications of the object.

47

In the event a rendered scene is desired, the option show light source will render all objects

with their appropriate color. An additional feature is the ability to change the direction and

placement of the light source. This allows the surfaces of the objects to be rendered in various

hues depending upon their angle with the light source.

3.3.10 Constraint-Based Modeling

The constraint mode of operations does not directly effect the modeling process itself.

It does, however, effect how an object will behave while being subjected to the previous

operations. This mode allows the user to specify design knowledge, or constraints, upon the

generation and manipulation of the entity including its interaction with other entities. Since the

constraint mode has several subordinate menu selections and operations, a complete

description of the operations of constraint-based modeling are presented in section 3.4. To

acquaint the reader with the mode however, the tool box of the various constraints which can

be applied to the entity prior to, or after generation are illustrated in figure 68. In addition,

figure 69 provides an example of interactive modeling within dimensional constraints.

-*- Spatial reprentation.

-- Dimensional attributes.

, '-Rotational attributes.

* - Spatial characteristics.

S.-- Mobility characteristics.

,r-M Proximity relationship to entity.

. - Associative relationship between entities.

S--Containment relationship of entities.

----- Type definition of entity.

i sional constraints

tfor the entity..

Figure 68: The tool box of icons in the Figure 69: An example of editing
constraints mode. solid objects (g-edit) with apply

constraints active.

48

3.4 C'Mod Constraint Operations

C°Mod provides additional features which enable it to perform as a constraint-based

solid modeler for architectural applications. This modeler, which can be utilized as a tool for

Computer-Aided Architectural Design, allows for the definition and implementation of specific

design knowledge which constrains the behavior of user definable three-dimensional entities.

The constraint-based solid modeler provides four main functional capabilities with

which the user may apply to architectural applications. I) The ability to specify the design

knowledge applicable to user definable three-dimensional entities including entity, or physical

characteristics, relational characteristics, and type identification. 2) The ability to modify,

store, and retrieve the entity specifications provided through knowledge specification. 3) The

ability to manipulate the three-dimensional entity in a manner which is consistent with the

behavioral characteristics dictated by the entity specifications. 4) The ability to extract, query,

information from an entity, or collection of entities, which has been provided by the

specifications of that entity, as well as information derived from the manipulation and creation

of the entity. This section elaborates on the constraint operations introduced in the previous

section and includes a discussion of thc sub-modes of the constraint operations complete with

illustrations of the application to the modeling process.

Constraint Mode Sub-Menu
2-0

.EHtrude
Converge

Revolve

T-dit Allows the specification and
Activates the Constriant Mode. trvs editing of the system constraints.

" UI oid Model/

Stores into permanent Colors ,Set Allows the display and
the constraint specification. VIlew-Modiry modification of entity constraints,the onstaintspeifiction ____.__ ,.Store Type

Retrieve Type

Displays the entire set of RetQvere T ---- Retrieves from "permanent" memory
constriarts for a selected entity, a constraint specification.

Figure 70: The constraint mode sub-menu.

49

The primary operations of C.Mod are found under the Modes menu and are invoked

by selecting one of the five basic constraint operations which are provided as sub-menu items

under the Constraints selection (figure 70). Depending upon the selection, the appropriate

icons will appear at the left of the screen as previously shown in the tool box (figure 68). The

first five icons (FJ - -) in the tool box represent the cntity characteristics,

the next three (M' r 0)represent the relational characteristics, while the last () is

the identification attribute. By selecting any of the available icons, the user can activate the

appropriate dialog for that type of constraint, and interactively establish the criteria for that

constraint/attribute for any selected entity. Each of the nine icon selections is supported by this

form of interaction, and provides the user with the ability to set, view, and modify any of the

constraints for any of the entities which have been created.

3.4.1 Set and View-Modify

To apply design knowledge to the interactive modcling process, that knowledge must

be specified and made available to the modeler. This constraint-based solid modeler provides

the knowledge specification capabilities, and allows the user to input specific design

knowledge applicable to a specific entity. This is accomplished by selecting the Set and

View-Modify options from the constraint sub-menu. The distinction between the two is that

Set applies to the system set of constraints used prior to the generation of an entity, while

View-Modify applies to the entities set of constraints after it has been created.

Input of design knowledge is provided through a dialog between the user and the

system. Design knowledge includes information and constraints specifically applicable to

spatial and volumetric entities such as a design space, a room description, or a building

description, and is the critical component in the interactive constraint-based modeling process.

Three types of design knowledge are represented, entity characteristics, relational

50

characteristics, and identifying characteristics. The following is a discussion of each type of

constraints and their specific fields.

3.4. 1.1 Entity Characteristics

Entity characteristics are the specific physical attributes which the entity is required to

satisfy during the generation and manipulation of the entity in the modeling process. Tc,, are

five major physical attributes which constrain the modeling process, spatial representation,

dimensional attributes, spatial characteristics, rotational attributes, and mobility characteristics.

Each of the five entity characteristics, their dialog interface, and an example of the impact upon

the modeling process, arc illustrated.

3.4.1.1.1 Spatial Representation

SSpatial Representation indicates the entity's general behavioral characteristic by

sclccing a solid or spatial representation through the dialog box presented after

selecting the spatial icon and clicking on the graphic window (figure 71). The distinction

between the two representations lies in the ability to contain mass. Solid elements arc just that

- solid - they contain mass. Spatial elements do not contain mass. they contain space, or a

spatial void. It is important to note that solid entities cannot contain any other entities, while

spatial entities may contain solid entities. An illustration of the two types of representations arc

shown in figure 72. Note that the system default representation is a solid entity.

SPATIAL R[PRESENTATION

L Sft 0(N V SPFIA NITY tNE

Figure 71: Dialog box for the spatial Figure 72: Illustration of the solid and
representation constraint, space representation.

51

3.4.1.1.2 Dimensional Attributes

[Dimensional attributes indicate a bounded box dimensional restriction upon the

generation and manipulation of the entity (figure 73). The minimum, maximum,

incremental and replication values may be set and activated for the width, height, and length

attributes respectively. The minimum value establishes the smallest value that attribute may

possess and acts as the initial set of values during generation. The maximum value establishes

the largest value the entity may posses and acts as the replication threshold when the replication

attribute is selected. An increment value establishes the incremental snap between the

minimum values and the maximum values within the bounded box limitation. Replication will

allow the successive regeneration of an additional entity when the maximum bounds have been

exceeded. The system defaults for the dimensional characteristics arc no minimum or

maximum criteria, and no replication required.

As an aid in the visualization of the dimensional attributes, C-Mod provide a temporary

set of construction lines (figure 74). These construction lines illustrate the dimensional criteria

from the initial selection on the graphic window, and can be removed by regenerating the

image on the screen.

Constuctio lie

DIMENSIONRI RURIBUTES MI1II
Hel~! WJ*[Min Mast In1(Rep

Height L~iJ Lm OM fl(Re
Width 04 96.

I@)Length 4 9

L Lengh .~*Height ~9. C

-Z

Figure 73: Dialog box for the dimensional Figure 74: Illustration of the construction
characteristics (onstraint. lines provided to visualize the constraints.

52

To illustrate the role in which the dimensional attributes perform in the modeling

process, a series of illustrations are presented. CoMod interactively constrains the generation

(figure 75 and figure 76) and the manipulation (figure 77) of an entity by maintaining the

dimensional characteristic of the entity in a bounding box (figure 78). This is required in order

to maintain the dimensional data in three-space, and allows for the constraint to be applicable

regardless of subsequent editing of the entity. As previously discussed, toggling the show

bounding box option from the option menu will hide the bounding box from view.

Figure 75: An illustration of the interactive Figure 76: An illustration of an object
generation of an entity within a dimensional created within the dimensional constraints.
set of constraints.

Oley

hight

width

Figure 77: Geometric editing within the Figure 78: Visualization of the bounding
limitations of the dimensional constraints. box method of maintaining dimensional

data.

53

3.4.1.1.3 Spatial Characteristics

p Spatial characteristics provide in addition to, or in lieu of, dimensional attributes,

constraints of area and volume which may be imposed on the entity. This allows the

limitation of the generation and manipulation of the entity based upon minimum and maximum

square and cubic units of measure (figure 79 and figure 80). The minimum value establishes

the smallest area or volume that entity may possess. The maximum values establish the largest

area or volume that entity may possess. An additional feature, orthogonality, constrains the

entity to orthogonal continuity. The default values no area or spatial restrictions. This

characteristic is not currently supported by CoMod. The dialog box will appear, and design

knowledge can be added to the constraint data structure, but the mechanisms to constrain the

generation and manipulation have been considered part of thc extensions to the modeler.

SPATIAL CHFRRICTERISTICS C.4"

~Min Max

0 Uolume (. 0orthogonal ASE HEIGHT

Min MON

At l CRINCEL AREA o Entity VOLUME of Entity

Figure 79: Dialog box for the spatial Figure 80: Illustration of the application
characteristics constraint. of spatial characteristics to the object.

3.4.1.1.4 Rotational Attributes

1 Rotational attributes provide the means with which the entity can be constrained to a

rotational level and degree of rotation during the geometric editing operations (figure

81). The level of rotation allows the selection and indication of allowable rotation in three-

space, and includes activation and limitation of each of thc three major axis (figure 82). The

minimum and maximum values indicate the allowable range of rotation from 0 to 360 degrees

in right-handed space. Additionally, the incremental degree of rotation about each axis can be

54

set. Default values for the rotational attributes are complete rotation about each axis with no

restrictions. Although not implemented in this version of CoMod, facilities for it's extension

have been provided.

ROIBTIONAI. RTFlIBUUES L

Z Rotate 0 Min Maw InC Ang

Figure 81: Dialog box for the rotational Figure 82: Illustration of the application
attributes constraint, of rotational attributes to the object.

3.4.1.1.5 Mobility Characteristics

~ The mobility characteristic establishes the degree of interaction the clement will exhibit

when acted upon by another element. Fixed mobility will not allow the element to

ricdt when interacted upon by another clement, but remains fixed to it's existing location. The

reaction is translated to the interacting clement. Free mobility allows the element to be freely

acted upon by another clement, and reaction is exhibited by the element itself. Upon selection

of the mobility icon, and then selecting either the system or entity. C°Mod will display the

mobility dialog box (figure 83). The user toggles between the two choices establishing the

mobility characteristic for the selected entity. The default for this attribute is free mobility with

no restrictions.

Since the mobility criteria fixes an object is three-space, the effects of this specifications

are visualized during the geometric editing of other entities. To illustrate this, two objects are

55

given opposite mobility characteristics (figure 84). The interactive manipulation of the free

entity which causes it to interact with the fixed entity will not be allowed (figure 85).

Conversely, translating the fixed object, (this is allowed since the mobility characteristic effects

the behavior of other objects) in a manner which causes it to interact with the free object will

result in the translation of the free object (figure 86). In effect, solids are moving solids, they

cannot intersect when in the constraint mode.

MOBILITY LHRCTIRISTIC casrsi e ofxd
[Obj

OIiNED MOBILITY cREMO ITOb ct 2 e to fre

-cha7racte icsettofree.

Figure 83: Dialog box for the mobility Figure 84: Assignments of the mobility
characteristics constraint, characteristic of two solid entities.

_XY -X/ I Y

< r"

Figure 85: An illustration of the dynamic Figure 86: An illustration of the dynamic
interaction between an object translating in interaction between an object translating in
three-space which confronts a fixed object. three-space which confronts a free object.
No further translation is allowed. Both objects translate in the same direction.

56

3.4.1.2 Relational Characteristics

Relational characteristics are attributes the entity possess which indicate how that entity

is to interact with other spatial entities. Three relational attributes, proximity relationships,

containment relationships, and associative relationships, used separately, or in combination,

constrain the manipulation of the entity within the three-dimensional modeling environment.

The following is a discussion of each of the three relational characteristics, and provides an

illustration of the effects upon the modeling process.

3.4.1.2.1 Proximity Relationships

W Proximity relationships establish an oflset zone around, for solid entities, and within,

for spatial entities, the entity which provides a buffer, or clear zone, which cannot be

cncroachcd upon by any other object. A buffer zone is created by establishing an offset from

the bounding box based on the width, iength, and height distance from the entity. By utilizing

an offset from the bounding box of the entity, the proximity data can be maintained in three-

space regardless of the subsequent editing of the entity. The default is no proximity criteria

specified. Upon selecting the proximity icon from the tool box, and the desired entity, the user

can indi, ate the required offset in the width, length, and height dimensions. Figure 87

indicates the dialog box when a solid object is selected, and figure 89 indicates the dialog box

for spac, entities. Note the difference between the two, a solid has an exterior proximity

distance, while the space has an interior proximity distance.

lo illustrate the effects on the modeling process, each case, solids and spaces, are

graphically represented with and without a proximity zone established. Figure 88 illustrates

how a proximity zone cffects the relationship between solid entities. Figure 90 illustrates how

the proximity zone effects the relationship between solids and spaces. The use of the

proximity zone allows the user to establish a set-back, such as a zoning restriction, or offset,

such a a ceiling to floor distance criteria, constraining the interactive modeling process.

57

PROHIMITY HRTIONSHIP:MILIDS

width

Height Width

Length Length

*JSOLIDS: Width 12.Length 12.Height 0. CACE

Figure 87: Dialog box for the proximity Figure 88: The interaction between entities
relationship for solid entities. with and without proximity relationships.

the wi ection
PROHIIV RELATIONSHIP: SPACES WdhR9

o
Width

H PRe S ht Leg h Hih
0p

rt Length Length2

Figure 89: D~ialog box for the proximity Figure 9:The interaction between a space
relationship for space entities. entity and two solid entities. The space

has a proximity offset established in the
width direction onily.

3.4.1.2.2 Containment Relationships

FEI Containment relationships establishe the relationship between dissimilar spatial

representations. Depending uponl the spatial representation given to an object, the

available options will be either no containment and solid contained by a specified volume, or

no containment and a spatial entity which contains user specified solid entities. No

58

containment allows the entity to be non-restricted in any space. If containment is desired, the

entity can belong to a spatial entity, and thus contained by that entity, or contain solid entities,

depending on the spatial representation. The default, regardless of the spatial representation, is

no containment.

Upon selection of the containment icon, the system will prompt the user for

information through a dialog box. Figures 91 and 92 illustrate the difference between the

containment dialog for a solid and a space. The implementation of the containment relationship

has been left as an extension to the CoMod application. Therefore, the dialog boxes have no

applicable use at the current time. It is important to note that spaces currently have the ability to

contain solid entities, and will restrict the generation and editing of the entity to the bounds

established for the space entity, as illustrated in figure 93.

CONTAINMENT RELATIONSHIP: SOLIOS CONTAINMENT RELATIONSHIP: SPRCES

e~~
~ (0

contains:
(< RO I oL1

I RemKe OK

Not Cont ined Contained bN: cANa nL CnNit''by ny entity 1 --] 1by ay enity NO contained entities

Figure 91: l)ialog box for the containment Figure 92: Dialog box for the containment
relationship for solid entities, relationship for space entities.

SSPACE to the imitsof the

SOUD ENTITIES HIEARCHICAL STRUCTURE
CONTAINEO BY A SPACE OF CONTAINMENT RELATIONSHIP

Figure 93: An Illustration of the containment constraint on the modeling process.

59

3.4.1.2.3 Associative Relationship

SAssociative relationships establish the response an entity will exhibit during the

interaction with another entity. Unlike the mobility characteristic which effects the

physical interaction between entities, the associative relationship effects the spatial relationship

between interacting entities. Utilizing an offset from the proximity zones for each entity, the

interaction between two or more entities will be affected by their associative relationship

indicated, and respond in one of three actions, none, attract, or repel (figure 95). No

relationship indicates that there is no inherent association required for that entity. Attracting

relationship indicates that the object will attract, or try to attach itself, to another object which

approaches the tolerance offset. Repel relationship indicates that the object will oppose, or

repel another entity which approaches the tolerance offset. Upon selection of the association

icon, the system will prompt the user to make a selection between the three options, and then

indicate the type of entity which the association is to be applied (figure 94). The selected

association will be applied to the interaction between the entity and all entities of the selected

type.

~Associative relationshi 0
associativ erelatinspne

Nor. OIttrct |n C AepI
/

T Yy p e y s e m : l s ~ ~ t .]T yA
,, . lrI - he4 8 n i s r m h e"a,

sa is

Figu e 9 : D alog box for the assoiatve igu e 95 Th of~t rom he roxm'tasocatv aeai n h eip.liy

ti! m e

60

To illustrate the interaction between entities influenced by the associative

relationship, several examples of attract and repel have been provided. The illustrations

provide a point of reference which indicates the modeling scene prior to a translation and

indicates the anticipated results based on the association and mobility of the entities in the

scene. Following each of these reference views are the actual results of the translation in

CoMod. Since this is still view of an interactive and dynamic process, outlined representations

of the object have been provided to indicate their position prior to translation.

Figure 96 illustrates the view of the modeling scene prior to a translation of an entity

(object A) which will be translated within the offset tolerance of another entity (object B). The

anticipated results are indicated by the direction vectors emanating from each of the entities.

Both entities have an association with one another of attract. In addition, object B has a

mobility characteristic set to free. As the user interactively translates the entity (object A) and

approaches the second entity, object B will snap, or move in one continuous motion, to the

fece of the translating entity (figure 97). As object A continues to translate. object B will

remain attached. To free the association between the two entities, a quick and continuous

movement of the original entity will release the attraction.

Object B: freemob" Object B is snape
and attract ass iation to the face of ct A

t

with object - as object A nslates.

Figure 96: The anticipated translation and Figure 97: The resulting interaction between
resultant interaction involving an entity an entity with free mobility and an attract

with free mobility and an attract assoc, association.

Wft B

61

With the mobility of the second object set to fixed, the anticipated results indicate a

different reaction. Figure 98 illustrates the view of the modeling scene prior to a translation of

an entity (object A) which will be translated within the offset tolerance of another entity (object

B). The anticipated results are indicated by the direction vectors emanating from each of the

entities. Both entities have an association with one another of attract. As the user interactively

translates the entity (object A) and approaches the second entity, object A will snap, or move in

one continuous motion, to the face of the fixed entity, object B (figure 99). Object A now can

only translate along the face of the fixed entity and cannot extend beyond the bounds of this

constraint. As with the previous example, to free the association between the two entities, a

quick and continuous movement of the original entity will release the attraction and permit free

movement in three-spacc without restrictions.

In either case, attract with free mobility, or attract with fixed mobility, the interacting

objects will attempt to attach themselves to one another. This characteristic is useful when

considering the placement of olids within a space, such as kitchen cabinetry along a static

wall. The wall can be set to fixed, and the association between it and the cabinets can be set to

attract, thus ensuring that the cabinets arc placed against a wall.

-X Ae 8: fixed O -X
aa acntract ass too

with objct asso I

wi~t fixe mobility Objec An attac fc asocaton

62

The modeling effects of the repel association follow in similar fashion to that of the

attract association. The difference is in the reaction of the entities. Entities with an repel

association will attempt to reject the attachment or encroachment upon the space surrounding

the entity. They will behave as magnets with similar charges attempting to repel one another.

An illustration of the repel association with both free and fixed mobility is presented to

illustrate the visualization of the effects on the modeling process.

Figure 100 illustrates the view of the modeling scene prior to a translation of an

entity (object A) which will be translated within the offset tolerance of another entity (object

B). The anticipated results are indicated by the direction vectors emanating from each of the

entities. Both entities have an association with one another of repel. Object B has a mobility

characteristic set to free. As the user interactively translates the entity (object A) and

approaches the second entity, object B will reject the advance of object A by moving out of its

path of travel (figure 101). As object A continues to translate, within the tolerance zone of

object B, object B will continuously move away from object A. This association will continue

as long as object A encroaches upon this tolerance Lone. A movement of object A in a

direction away from object B does not effect object B.

Object B: free mob '' \ Object B is repelled
and repel asso tion from object A as"'
with a epl asc assci

SRe~ultant. • y j

wft t. a.
N

7 -7

Figure 100: The anticipated translation Figure 101: The resulting interaction
and resultant Interaction involving an entity between an entity with free mobility and a
with free mobility and a repel ssociation. repel association.

63

With the mobility of the second object set to fixed, the anticipated results indicate an

opposite reaction. Figure 102 illustrates the view of the modeling scene prior to a translation

of an entity (object A) which will be translated within the offset tolerance of another entity

(object B). The anticipated results are indicated by the direction vectors emanating from each

of the entities. Both entities have an association with one another of repel. As the user

interactively translates the entity (object A) and approaches the second entity, object A will be

rejected. or repelled away from object B (figure 103). As object A continues to translate,

within the tolerance zone of object B, object B will continuously reject object A and force it

back from its tolerance zone. This association will continue as long as object A encroaches

upon this tolerance zone.

The use of the association relationship provides a method of realistically modeling

the behavior of interacting entities. When used in combination with the other constraint

characteristics and relationships, the modeling environment becomes responsive to the physical

and relational quality of solid and space entities. In an interactive modeling environment, this

translates to a dynamic and realistic modeling of simulated real world entities which will

behave in accordance with anticipated and results.

Object B: fixed mo Objec A is repelled from

and repel asso tion objec B as object A tra ates.
i Objec: B is unchai

/~ y'

nObject A: free repeity

Figure 102: The anticipated translation Figure 103: The resulting interaction
and resultant interaction involving an entity between an entity with fixed mobility and a
with fixed mobility and a repel association. repel association.

AL6-

64

3.4. 1.3 [dentification Attribute

The identification attribute allows the unique identification of a set of constraints which

have been established for a given entity. This allows the system to distinguish between

differing types of entities when establishing associations, and provides a means of identifying

a set of constraints during the 1/0 operations. Note that the type definition attribute is required

when storing and retrieving constraint information.

3.4.1.3.1 Type Definition

SType Definition is a unique identifiable descriptive attribute associated to the set of

constraints representing an cntit. The specificition of a type definition to a specific

set of constraints provides the capability to store and retrieve the entire set of constraints with a

single identifying macro. By allowing the sLt of constraints to be identified as a single type

definition, the set of constraints can be created and stored once, and then retrieved and

assigned to entities with a single refcrcicc indicating that type. This ability to assign a

complete set of constraints with a single reference allows quick and efficient use of the design

knowledge about entity types without specific knowledge about all the particular attributes

required to represent that type. A type definition is required when storing a set of constraints

into memory. Upon sclccting the type definition icon. the system will prompt the user for a

name of the entity (figure 104). The default name is the current name assigned to the system

specifications.

TYPE DEFINITION

Enter the unique identifying
name for the entity.

OK
TYPE: t]

Figure 104: The type definition dialog box.

kL

(5

3.4.2 S~ore Type and Retrieve Type

CMod provides the user to store and retrieve specific sets of dcsign knowledge as an

entire type. This allows the specification of an entire class of objects to be stored for use later

without respecification. C*Mod distinguishes this file structure independently tbrm the project

files specified in section 3.1.1 and 3.2.2. Figure 105 illustrates the constraint type definition

icon used to represent this information. The standard file dialogs presented in the following

section will only access these types of files if they arc present. To facilitate this specific form

of file processing, CMod provides two specific I/O operations under the constraint sub-menu.

Store Type and Retrieve Type. The following section will elaborate on the use of each of

these operations.

definition

Figure 105: The type definition file.

3.4.2.1 Store Type

Store Type allows the storage of the complete set of constraint specifications based on

the entity type definition to "permanent" memory, thus retaining the design specifications for

use at a later point in time. Upon selection of the Store Type sub-mode, and subsequent

click on the graphic window, the system will display a standard file dialog box which will

prompt the user for a type definition in the event one has not been provided, and will write the

type definition to a file in "permanent" memory. In the event that a type definition previously

exists, the user will be prompted to change or accept the name of the definition for storage.

Figure 106 illustrates the standard file dialog for saving constraint files.

66

3.4.2.2 Retrieve Type

Retrieve type allows the retrieval of a complete set ofconstrai,,i pcpcifications [ased on

the type definition which have been stored in "permanent" memory. Upon selection of the

Retrieve Type sub-mode, and subsequent click on the graphic window, the system will

display a standard file dialog box which will prompt the user for the identification of the type

definition which is to be retrieved, and will attempt to access that set of constraint

specifications. In the event that the constraints have been stored with the store type operation

listed above, the system will then proceed to read the file into the system specifications for use

by the system. Figure 107 illustrates the standard file dialog box for file retrieval. Any new

entities created under this set of system specifications will contain and exhibit the constraints of

the retrieved type.

Tobin * cTobin

Saue Constraint As: O

isystrn FCaincel

Figure 106: Store file dialog box. Figure 107: Retrieve file dialog box.

3.4.3 Query

As an alternative to viewing the individual constraints upon a selected entity, CoMod

provides the user with the ability to query the systems to display the complete set of design

knowledge pertaining to a specific entity, or to the system specifications. By selecting the

Query option under the constraints sub-menu, the user can retrieve the entire set of constraints

which have been specified for the entity or for the system. Subsequent clicking, or selection of

67

the entity will display the query dialog box illustrating all of the constraints set for that

particular object (figure 108). In the event that the constraints for the system are desired, any

selection on the graphic window which is not an object will display the same dialog box for the

system specifications. This method allows the immediate and efficient visualization of the

entire set of constraints from a single command.

The following constraints have been set: ____

Entity Name: System ARCHSM

Entity Type: Solid Entity
Mobility: Free

Dimensional: min ma inc active replicate
width: 24.0 96.0 3.0 Yes No
!ength: 24.0 96.0 3.0 Yes NO
height: 24.0 96.0 3.0 Yes No

Spatial: min maa active ortho
volume: 0.0 0.0 No No

area: 0.0 0.0 No No

Rotational: ma min inc active
mrot: 0.0 0.0 0.0 NO
yrot: 0.0 0.0 0.0 No
zrot: 0.0 0.0 0.0 NO

Proximity: width length height active

Solid : 12.0 f.0 00 yes RETUN

Figure 108: The query dialog box.

CHAPTER IV

INTERNAL WORKINGS AND ALGORITHMS

The introduction of design knowledge to the interactive solid modeling process requires

that the modeler provide an efficient and economic method of determining and evaluating the

criteria, or constraints. This is a result of the large number of calculations in a three-

dimensional environment. Each additional entity, as well as each additional constraint, or

representation of design knowledge, further compounds the interactive modeling process.

This chapter discusses the internal composition of the constraint-based solid modeler, CMod.

and presents the main data structures used to represent solid objects and design knowledge.

Additional discussion will focus on the algorithmic outline of each of the main procedures used

to provide the association and interaction between solids and constraints.

4.1 Discussion of the Internal Composition

Io achieve the goals and objectives stated in chapter 1, the main capabilities of the

constraint-based solid modeler must allow, and provide for, the interactive use of design

knowledge to constrain the generation and editing functions of a modeler. To accomplish this

interaction, the constraint-based solid modeler must represent two types of data, object and
constraint. The object data structure represents the entity itself, and is the primary data

structure for the solid modeler. Section 4. 1.1 discusses the object data structure in detail, and

illustrates the internal representation within the modeler. The second primary data structure for

the constraint-based solid modeler is the constraint data structure. This data structure

represents the design knowledge about the entity specified in the object data structure. Section

68

69

4.1.2 discusses the constraint data structure in detail, and illustrates the internal representation

with the modeler.

4.1.1 Object Data Structure

The entity in the constraint-based solid modeler is represented internally in an object

data structure. This internal representation models the solid object by utilizing a boundary

representation. A boundary representation contains descriptive data at six topological levels,

object, volume, face, curve, segment, and points. Each topological level is internally

represented as a separate array with references between the different levels. Figure 109

illustrates a hicarchical diagram indicating the topological levels from the most general to the

most specific.

OiJECT VOLUME FACE CURVE SEQMENT POINTS

Figure 109: lbpological levels of an object.

Boundary representations follow a hicarchical description indicated by the topological

levels of the object. An object is defined 'v the composition of a volume, and contains

attribute information such as color, and constraints. A volume is defined as a collection of

faces which represent each facet, or face, of an entity. Volumes contain a list of all of the faces

which represent the surface of the object. To represent each surface, faces, provide a means

of storing a collection of curves, each representing a continuous edge found along the planar

surface. Thus, a face with an opening is represented by two curves, one for the outer edge, or

boundary, of the surface, and one for the outer edge, or boundary, of the opening. These

70

curves are a collection of continuous segments which define the boundary of the curve.

Curves contain a list of all of the segments which construct the curve, along with the number

of points contained within each curve. Segments connect points, and allow for the tracing of

each edge along the curve. At the lowest topological level, points represent the actual

Cartesian coordinate values which define the object. By constructing the solid object in this

manner, the points which define the entire object are stored only once, regardless of the

number of times it is used by adjacent faces. Figure 110 illustrates the internal object data

structure. In addition, a complete description of each component is presented to fully illustrate

the composition of the object.

OBJECT DATA STRUCTURE:

iQW volmdf S.clor .net etind Constraint Data Structure
0) em N

see figure 111.VOLM

EA~E
p&face indx agg , M n q_

i= .smrker ,o nx Jro ira

Figure !!0O: Diagram of the object data structure.

71

Obj, which is at the highest topological level internally, represent thc object as a

collection of all other topological levels, and include five elements, type, volmindx, color,

next, and entindx. The following describes each of these elements:

- type: a description of the type of object generation (extrusion, convergence).

- volmindx: an index to the first volume of the object.

-color: a color descriptor which indicates the color of the object.

- next: an index to the next object in the object array structure.

- entindx: an index which is the link between the object data structure and the

constraint data structure, and allows the entity to possess design knowledge.

Volm is the next topological level and represent the collection of volume entities which

are formed to compose the object. Typically, a collection of volumes create an object.

However, for this modeler, an object and volume arc similar in nature. A volume structure is

composed of three elements, fromobj, faceindx, and next. The following describes each of

these elements:

- fromobj: an index to the face array, and indicates the first face among the list of

faces which make up the object.

- fromobj: an index which serves as a reference to the object which the volume

belongs. This is the link between objects and volumes.

- next: an index to the next volume in the volume array structure.

Face is an array which indicates each face of a volume and is made up of a collection

of curves comprising each face of an entity. The face array is composed of three elements,

fromvolm, curvindx, and next. The following describes each of these elements:

- fromvolm: an index to the volume which is the owner of this faces.

72

- curvindx: an index to the curve array indicating the list of curves which make up

each face.

- next: an index to the next face in the face array structure.

Curv is an array which contains a list of all c nrves for each face of the object. Curves

include the outer curve of a solid entity as well as any interior curve representing opening

within the face of the entity. The curve structure contains four elements. fromfacc. scgindx,

totpoints, and next. The following describes each of these elements:

- fromface: an index to the face which owns the curve, indicating which face this

curve belongs to.

- segindx: an index to the first segement of the curve, indicating the beginning of the

curve at the segment lcvei.

- totpoints: indicates the total number of points or segments which make up the

curve, this acts as a loop counter when tracing the curve.

- next: an index to the next curve in the curve array structure which belongs to this

particular face.

Seg is an array which contains a two-way linked list of all segments which make up

the each curve in the face. Segments arc a connection between two points in the data structure

are linked to the previous and next segments of the curve. The segment structure contains four

elements. fromcurv, xyzindx, prcv, and next. The following describes each ol these elements:

- fromcurv: an index to the curve which owns this segment. indicating which curve

this segment belongs to.

- xyzindx: an index to the points (xyz) array, indicating the beginning point of the

segment.

73

. prey: an index to the seg array, indicating the previous segement in the list of

segments which compose the curve.

- next: an index to the scg array, indicating the next segment in the list of segments

which compose the curve.

XYZ is an array which contains the lowest topological level of information required to

represent the solid object, and stores the coordinate values of the points in three-space. The

xyz structure contains five elements, fromvolm, marker, x, y, and z. The following describes

each of these elements:

- fromvolm: an index to the volm array, indicating the volume which owns this set

of points.

- marker: a open element which serves as a flag for various operations within the

modeler.

- x: a double value indicating the Cartesian coordinate value of the point in the x

direction.

- y: a double value indicating the Cartesian coordinate value of the point in the y

direction.

- z: a double value indicating the Cartesian coordinate value of the point in the z

direction.

4.1.2 Constraint Data Structure

Design knowledge is represented internally by the constraint data structure. The

constraint data structure is composed of two information levels, and five constraint tables. The

two information levels arc comprised of the entity level which stores specific design

knowledge input by the user, and the characteristic and relationship level, which is determined

by the system. The importance of these elements lies in the access to the design data which is

74

stored in the constraint tables. Design data, when interpreted interactively through the user, is

stored in one of five tables, data, association, containment, bounding box, proximity box, and

bounding sphere. Figure 111 illustrates the constraint data structure and its information flow.

CONSTRAINT DATA STRUCTURE FOR AN ENTITY:

0) fo j

[name

a ilt Data Table:

Swidth ~ vaue a ue vau~0)e

Slent b 1)1 1 1 11 1 1
{ height 2)[[I![

[area) ~illI 1 1 IX I 1 1 LI

Fvolume 4)[I]Z EI 1 I
x 5)[IZ] - 1

I rot 6)[- []{ [

p zrot 7)[11]IZ] [
prox #8) 1 1 1 1 11

Association Table:

Sassoc *0) en associa e nt I

Containment Table:
contain -0) en cont next q

Bounding Box Table:
bound b - 0) boxbase box-top

1)[1 Y I)[[Y]

2) 1 { y I[z2)[x [y I z I
3) i l Y I 3)r x Y I z I

Proximity Box Table:
rox b * 0) proxbase prox top

0) [[Y] 0)[xy [z]
1)[x I[Y = 1.1 z t- [z]
2)[F y 1 2)[xy []

3){ I y I 3) x [Y] z]

BoundingSphere Table:
Ibound s - - 0) [cen cn z S rra ius

Figure 111: Diagram of the constraint data structure.

75

Entity, which is at the highest level internally, is an array of the critical

information required by the constraint modcler, and is indexed into through the object's

entindx field. The entity field is composed of eighteen elements: fromobj, name, type,

mobility, width, length, height, area, volume, xrot, yrot, zrot, proximity, assoc, contain,

bound_b, proxb, and bounds. The following is a discussion of each of these elements:

- fromobj: an index to the object data structure, indicating the object which owns

this particular set of constraints or design data.

- name: The name represents a specific identity for a collection of design data or

constraints, and is used to store and retrieve the data as that collection.

- type: indicates the entity's spatial representation either as a solid or as a spatial. A 0

(zero) indicates a space, and a value of I (one) indicates a solid object.

- mobility: a specific value indicating the entities ability to react to the interaction

betwccn other entities. A 0 (zero) value indicates fixed mobility, and a I (one) value

indicates free mobility.

- width: an index to the data table, indicating the width attributes required for the

entity. The values represented in the data table refer to the minimum width,

maximum width, increment, activc/inactivc flag, and the replication flag.

respectively. Negative values indicate that attribute is not applicable.

- length: an index to the data table, indicating the length attributes required for the

entity. The values represented in the data table refer to the minimum length,

maximum length, increment, activc/inactivc flag, and the replication flag.

respectively. Negative values indicate that attribute is not applicable.

- height: an index to the data table, indicating the height attributes required for the

entity. The values represented in the data table refer to the minimum height,

maximum height, increment, active/inactive flag, and the replication flag,

76

respectively. Negative values indicate that attribute is not applicable. Negative

values indicate that attribute is not applicable.

- area: an index to the data table, indicating the area attributes required for the entity.

The values represented in the data table refer to the minimum area , maximum area, a

null value, active/inactive flag, and the continuity flag, respectively. Negative values

indicate that attribute is not applicable.

- volume: an index to the data table, indicating the volume attributes required for the

entity. The values represented in the data table refer to the minimum volume,

maximum volume, a null value, active/inactive flag, and the continuity flag,

respectively.

- xrot: an index to the data table, indicating the xrot attributes required for the entity.

The values represented in the data table refer to the minimum rotation angle,

maximum rotation angle, an incremental angle, an active/inactive flag, and a null

value, respectively.

- yrot: an index to the data table, indicating the yrot attributes required for the entity.

The values represented in the data table refer to the minimum rotation angle.

maximum rotation angle, an incremental angle, an active/inactive flag, and a null

value, respectively.

- zrot: an index to the data table, indicating the zrot attributes required for the entity.

The values represented in the data table refer to the minimum rotation angle.

maximum rotation angle, an incremental angle, an active/inactive flag, and a null

value, respectively.

- proximity: an index to the data table, indicating the specific proximity information

for this constraint type.

- assoc: an index to the association table, indicating the entity's association to other

specified entities.

77

- contain: an index to the containment table, indicating the entity's containment

relationship with other entities.

- boundb: an index to the bounding box table, indicating the top and bottom face of

the entity's bounding box.

- prox-b: an index to the proximity box table, indicating the top and bottom face of

the entity's proximity box.

- bounds: an index to the bounding sphere table, indicating the entity's bounding

sphere.

Data-Table, is an array structure which contains the actual values used to describe the

design data and constraints. The datatable is a dynamic structure which size varies by the

number of constraints specified as unique constraints by the user. This use of entity

specification allows for the storage and retrieval of information pertinent to the constraint-based

modeler. The data table is composed of five elements, value a, value b, valuc_c. flag_a, and

flag_b. The following is a discussion of each element:

- valuea: a float value which represents the minimum values for a specified field.

This element is used for each of the character elements, as well as for the width

proximity value in the relational structure.

- value-b: a float value which represents the maximum values for a specified field.

This element is used for each of the character elements, as well as for the length

proximity value in the relational structure.

- value-c: a float value which represents the incremental values for a specified field.

This element is used for each of the character elements, as well as for the width

proximity value in the relational structure. This field is not used for the area and

volume characteristics.

78

- flag.a: an integer value which represents the active/inactive flag used to indicate the

application of this constraint within the modeler.

- flagb: an integer value which represents the replication and orthogonal continuity

within a particular constraint. This field is not used for rotational attributes.

Association-Table, is a linked list array structure which contains the associations

established between the entity and the other specified entities within the data structure. This list

serves to rcpresent how the elemcnt associates with cach other clement in the currently

described world. The associationtable is composed of three elements, entity, associate, and

next. The following is a discussion of each element:

entity: an index to the entity array structure, indicating the entity which the current

entity is associated.

associate: an integer value indicating the association with the entity specified in the

entity field. A -1 (neg one) value represents an adverse or repel association, a 0

(zero) value represents no association and serves as the default value, and a I (one)

value represents attraction association.

next: an index to the next entity in the association table, which an association has

been established.

ContainmentTable, is a linked list array structure which contains the containment

restrictions upon the entity. This list serves as the hiearchical tree structure governing the

activity of the entity. The containmenttable is composed of four elements, entity, type,

cont_by, and next. The following is a discussion of each element:

- entity: an index to the entity array structure, indicating the entity.

- type: indicates the entity's spatial representation either as a solid or as a spatial.

79

- cont by: an index to the entity array structure which indicates the entity which

contains this entity.

- next: an index to the next entity in the Containment_table list.

Bounding Box Table, an array structure which contains the bounding box of the

entity. This is important distinguishing characteristic of the solid entity as it establishes the link

between the entity and the constraints. The bounding box is represented by the four points

which define the base, and the four points which define the top. The representations,

boxbase and box_top, provide a static array for this information.

- box base: an array of four elements, which represent three-dimensional Cartesian

coordinate values of the four points of the base. A double value is stored for each

value x, y, and z.

- box-top: an array of four elements, which represent three-dimensional Cartesian

coordinate values of the four points of the top. A double value is stored for each

value x. y, and z.

- visible: an integer value used to determine whether or not to display the bounding

box representation.

Proximity Box Table, an array structure which contains the proximity box of the

entity. This is important characteristic of an entity and is determined by the specification of a

proximity distance which is stored in the data table. The pre-calculation of this oftfet provides

an efficient method of maintaining the data during three-dimensional manipulation, and

therefore limits the recalculation which would be required for every movement of the object.

The proximity box is represented by the four points which define the base, and the four points

which define the top. The representations, prox_base and prox_top, provide a static array for

this information.

SO

- prox-base: an array of four elements, which represent three-dimensional Cartesian

coordinate values of the four points of the base. A double value is stored for each

value x, y, and z.

- prox_top: an array of four elements, which represent three-dimensional Cartesian

coordinate values of the four points of the top. A double value is stored for each

value x, y, and z.

. visible: is not used.

Bounding Sphere Table, an array structure which contains the bounding sphere of

the entity, is also provided. The bounding sphere is utilized to determine candidate entities for

further intersection calculation. This method of proximity checking allows for the rapid

elimination or determination or possible intersecting object.

- centx: a value indicating the x value of the centroid of the entity.

- cent.y: a value indicating the y value of the centroid ofthc entity.

- centz: a value indicating the z value of the centroid of the entity.

- radius: a value indicating the radius of the sphere.

The establishment of the tables, allows the algorithms to execute in a more efficient

manner. Pre-calculation of data which is continuously utilized provides an effective solution to

the exponential loss in performance due to the number of three-dimensional calculations

required. In order to aid the programmer in visualizing and recording this information, the

internal constraint data base can be written to an external file. This file provides the

programmer with all of the user specified constraints per'inent to a specific entity, but also

indicates the internally determined information as well. As a point of illustration. figure 112

provides a complete example of the constraint data structure for a cubic entity created in the

fourth quadrant of the x-y plane.

81

Constraint Set for entity 1

Entity: 1
fromobj 0
name Obji
type 1 Data Table:
mobility 1 idata valuea valueb value-c flag a flag_b
width 9 9) 24.00 72.00 6.00 1 0
length 10 10) 48.00 96.00 6.00 1 0
height 11 11) 72,00 96.00 6.00 1 0
area 12 12) 125.00 250.00 0.00 1 1
volume 13 13) 0.00 0.00 0.00 0 0
xrot 14 14) 45.00 90.00 5.00 1 0
yrot 15 15) 45.00 90.00 5.00 1 0
zrot 16 16) 45.00 90.00 5.00 1 0
prox 17 17) 12.00 12.00 12.00 1 0

Association Table:
iassoc entity associate next

assoc 1 1) 1 0 3
3) 2 1 6
6) 3 -1 -1

Containment Table:
icont entity type contby next

contain 1 1) -1 1 -1 -1

Bounding Box Table:
ibbox boxbase boxtop

bound-b 1 1) ibase x y z itop x y z
0) -168.00 -144.00 0.00 0) -168.00 -144.00 96.00
1) -168.00 -90.00 0.00 1) -168.00 -90.00 96.00
2) -102.00 -90.00 0.00 2) -102.00 -90.00 96.00
3) -102.00 -144.00 0.00 3) -102.00 -144.00 96.00

visible 1

Proximity Box Table:
ipbox proxbase prox top

proxb 1 1) ibase x y z itop x y z
0) -180.00 -156.00 -12.00 0) -180.00 -156.00 108.00
1) -180.00 -78.00 -12.00 1) -180.00 -78.00 108.00
2) -90.00 -78.00 -12.00 2) -90.00 -78.00 108.00
3) -90.00 -156.00 -12.00 3) -90.00 -156.00 108.00

Bounding Sphere Table:
ibsphere cent-x centy centz radius

bound s 1 1) -135.00 -117.00 48.00 180.53

Figure 112: An example of the internal constraint database for an entity.

82

4.2 Algorithmic Outline of Required Procedures

The implementation of the constraint-based solid modeler follows the form of the

functional characteristics as described in Chapter Ill. To implement the internal workings and

capabilities of the modeler, several additions and modification to the existing educational

modeler, MacMod844, were performed. To illustrate the implementation of the constraint

operations to the program, three main areas, knowledge specification, entity generation, and

constraint modeling, are presented in order to clarify new procedures and modifications to

existing procedures which were required. The following sections elaborate on the general

requirements for implementation, where and how the requirements arc composed within the

existing program, and a general algorithmic outline of the process of constraint-based modeling

with the procedures completed.

4.2.1 Knowledge Specification

As stated in Chapter Ill, section 3.4, the first of four main capabilities of the constraint-

based solid modeler is to provide the ability to specify the design knowledge applicable to user

definable three-dimensional entities. What this ctails is the ability to input the knowledge

specifications. This section deals with the user interface and the dialog handler required to

input the design knowledge into the system specifications which are required for the pencration

of three-dimensional entities with constraints and includes the algorithmic outline for

implementing these features.

4.2.1.1 User Interface

To facilitate the interaction between the user and the constraint modeler, several

modification to the existing MacMod844, program were be made including additions to the

menu selection routines, and the iconic interface. The changes to display the menu items and

83

icons were relatively minor and are not presented formally here. However, the interface

between the dialog handler and the user is critical to the operation of the program and is

presented. This interface is provided in the xcommand function of MacMod844. To

facilitate the proper activation and interface between the user and the dialog handler, the icon

selection must be added accordingly. The outline below and the diagram (figure 113) indicatc

the process which was accommodated.

211 212 213 214 IIL/ I ro ,,i NI
SUBMODrar*N SUMD sor/er

MP* 219 I I \
ITK F*- II

215 216 217 218 (quely)Is

Figure 113: Illustration of the interface calls to properly invoke the dialog handler.

The following outline describes the additions to x command which were made in order

to facilitate the user interface for the knowledge specification/knowledge manipulation features

of the constraint-bascd solid modeler:

1) Determine the selected command by performing a switch on the activicon. This

will determine the case of the selected mode the user desires to perform.

2) The active icon and the submode determines the parameters which will be passed to

the constraint dialog handler.

3) Determine the submode selected (this is from the mode menu - constraints, and

includes the options set, view/modify, store, retrieve, and query) and adjust

parameters accordingly:

set - activates the modal dialog between the user and the system for the system

specifications only.

84

view/retrieve - activates the modal dialog between the user and the system for all

current specifications, entity and system.

store type - activates the modal dialog between user and system to store into

memory the set of specifications selected. This is only allowed for the type

definition icon.

retrieve type - activates the modal dialog between user and system to retrieve

from memory the set of specifications selected. This is only allowed for the type

definition icon.

query - activates the information (static) dialog indicating the particular

information about the entity or system specifications. Note when selected via the

type definition icon, a complete list of all parameters will be presented.

4) Make the call to the do-dialog handler with the proper settings.

4.2.1.2 Dialog Handler

To provide the proper dialog routine calls, a dialog handler is included to aid the user.

The dialog handler facilitates the link between the menu and icon selection routines and the

dialog management routines. This relatively small function simply determines which dialog

box the user requires, and whether or not the constraints apply to the system specifications or

the entity specifications. The following is an outline of the procedure.

i) Determine the specification which is desired. This is performed by determining

whether or not an entity has been selected. If an entity was selected, the

specifications for that particular entity will be called upon, otherwise, the system

specifications will be used.

85

2) Process the selection by determining which case is appropriate for this call. This is

determined by the mode the user has selected, set, view/modify, store, retrieve, or

query. Depending upon the case, one of the following options will bc performed.

a. Set the system specifications accordingly. This is accomplished by invoking a

modal dialog for the active icon and indicating that the systems constraints arc

to be used.

b. Set the entity specifications accordingly. This is accomplished by invoking a

modal dialog for the active icon and indicating the specific entity's constraints

are to be used.

c. Store the constraint specifications by invoking the storage function and

providing the constraint name which is to be stored.

d. Retrieve the constraint specifications by invoking the retrieval function and

providing the constraint name which is to be retrieved.

c. Perform a query on the selection by invoking a doquery function.

3) Return to the calling function.

I t

Pick v psofat sp~Wvicr ons constraint O c raint set Selecton

Figure 114: Illustration of the dialog handler.

86

4.2.2 Entity Generation

The second of the three main areas of the constraint-based solid modeler is to provide

the ability to generate, view, modify, store, and retrieve the entity along with its constraints.

This section outlines the algorithm required to create the three dimensional representation

utilizing the solid data structure presented in section 4.1.1 as well as the constraint data

structure presented in section 4.1.2. The following algorithm is based on the current

operations of MacMod844.

4.2.2.1 Generation within Dimensional Constraints

The following algorithm was incorporated as part of the MacModcler routines, and is

invoked when the constraint mode of operation is active while in the extrusion mode.

I) Calculate the three-dimensional coordinate value of the point selected.

2) Determine if first point selected lies within any existing solid entities.

(Point_inside solid) If so, reject attempt to create a solid entity.

3) Set adjustment factor to full value (1.0) for rectilinear entities, and half value (0.5)

for all other primitive entities. (This allows for the difference in creation

techniques of primitives.)

4) Check the set height value for compliance with the allowable range of values:

a. If height set is greater than the allowable maximum, set height to maximum

value.

b. If height set is less than the allowable minimum, set height to minimum value.

5) Set the generation threshold values for length and width:

a. Set the allowable minimum length to the adjusted Length Minimum.

b. Set the allowable maximum length to the adjusted Length Maximum.

c. Set the allowable minimum width to the adjusted Width Minimum.

87

d. Set the allowable maximum length to the adjusted Width Maximum.

6) Calculate the screen point of the three-dimensional coordinate value and set and

mark the results as the first point of the base.

7) Initialize the horizontal and vertical indexes to zero. Initialize the beginning point

array, the ending point array, the polygon point list, and the created array,

allocating sufficient memory space.

8) Assign the beginning point of the initial object the value of the first point. The

beginning point array carries the first point for each object based upon the

horizontal and vertical indexes.

9) Set the old point equal to the first point; this sets the last mouse position.

10) Set the penmode to Xor in preparation for rubbcrbanding the primitive.

11) Initialize the created array indicating no objects have been drawn.

12) While the mouse button is depressed, perform the following steps to rubbcrband

the primitive object interactively including replication if required:

a. Read the new mouse location and determine if its position has changed.

b. If this is a new location, perform the following:

1. If the replication attribute of the dimensional constraint has been set, adjust

the horizontal and vertical indexes according to the following:

(a) Calculate the three-dimensional coordinate value or the beginning

point and the new point adjusting for the reference plane.

(b) If' the horizontal distance between the new location and the current

beginning point is equal to the maximum allowable length, determine

if the horizontal movement is away from the beginning point.

(c) If the horizontal movement is away from the previous point, that is the

direction of movement is moving away from the beginning point,

perform the following:

88

(1) increment the horizontal index

(2) set the beginning point for each replicated object (each new

instance created by incrementing the horizontal index) oflsetting

the horizontal value by the length proximity value and if non-

rectilinear primitive, adding the allowable length.

(d) If the horizontal movement is toward the previous point, that is the

direction of movement is moving to the beginning point. perform the

following:

(1) for each replicated object (each instance of the current horizontal

index) crasc the mark designating the beginning point, erase the

polygon, and set the created index to false.

(2) decrement the horizontal index.

(e) If the vertical distance between the new location and the current

beginning point is equal lo the maximum allowable width, determine

if the vertical movement is away from the beginning point.

(f) If the vertical movement is away from the previous point, that is the

direction of movemcnt is moving away from the beginning point,

perform the following:

(1) increment the vertical index

(2) set the beginning point for each replicated object (each new

instance created by incrementing the vertical index)offsetting the

vertical value by the width proximity value and if non-rectilinear

primitive, adding the allowable width.

(g) If the vertical movement is toward the previous point, that is the

direction of movement is moving to the beginning point, perform the

following:

i

89

(1) for each replicated object (each instance of the current vertical

index) erase the mark designating the beginning point, erase the

polygon, and set the created index to false.

(2) decrement the vertical index.

2. For each horizontal object (0 to horizontal index) and for each vertical

object (0 to vertical index) perform the following:

(a) Calculate the three-dimensional coordinate value tl,, beginning

point and the new point adjusting for the reference plane.

(b) Determine whether the new width is less than the minimum allowable

width, within the minimum and maximum allowable width. or greater

than the maximum allowable width.

(c) Determine whether the new length is less than the minimal allowable

length, within the minimum and maximum allowable length. or

greater than the maximum allowable length.

(d) Set the working zone according to the following:

zone 1: Width is less than the minimum allowable width AND

Length is less than the minimum allowable length.

zone 2: Length is within the allowable tolerances for length AND

(Width is less than the minimum allowable width OR greater

than the maximum allowable width.)

zone 3: Width is within the allowable tolerances for width

AND(Length is less than the minimum allowable length OR

greater than the maximum allowable length.)

zone 4: Length is within the allowable tolerances for length AND

Width is within the allowable tolerances for width.

i! _6

90

zone 5: (Length is greater than the maximum allowable length AND

Width is greater than the maximum allowable width) OR

(Length is greater than the maximum allowable length AND

Width is less than the minimum allowable width) OR

(Length is less than the minimum allowable length AND

Width is greater than the maximum allowable width.)

3. If the object has been created (created index is true) then rubberband the

object according to the following zone restrictions:

(a) If the location zone is I or 5, No rubberbanding is allowed.

(b) If the location zone is 2, Draw the old polygon, adjust the vertical

value of the objects cndpoint accordingly, and draw the new polygon.

(c) If the location zone is 3, Draw the old polygon, adjust the horizontal

value of the objects cndpoint accordingly, and draw the new polygon.

(d) If the location zone is 4. Draw the old polygon. adjust both the

horizontal value and the vertical value of the objects endpoint

accordingly, and draw the new polygon.

4. If the object has not been created (created index is false) then rubbcrband

the object according to the following zone restrictions:

(a) If the location zone is 1, 2, 3, or 5. No rubberbanding of object is

allowed.

(b) If the location zone is 4, set the creation index to true, set the endpoint

of he entity equal to the new point. draw a mark tor the beginning

point, and draw the new polygon.

5. Set the old point equal to the new point thus preserving the current location

as the previous location.

91

13) Upon the release of the mouse button tor each horizontal object () to horizontal

index) and for each vertical object (0 to vertical index) perform the following:

a. determine if the polygon primitive has been created. It created index is false

then no entity will be generated,

b. If the horizontal index, the vertical index, and the created index are all set to

zero, return to the event manager, no object is created.

c. If created is true then draw the new polygon and delete mark for first point.

This prepares the graphics screen for the generation of the solid elements.

14) Set the pen mode to copy.

15) For each horizontal object (0 to horizontal index) and for each vertical object (0 to

vertical index) perform the following:

a. check the area of the polygon primitive If the area of the polygon is negative,

reverse the direction of the segments which compose the polygon.

b. create the three dimensional representation of the solid entity by extrusion of

the base polygon primitive stored in the temporary polygon array. Note these

polygon primitives satisfy the dimensional constraints set in the system

specifications.

c. store the constraint values into the Constraint data structure for the entity by

incremenling the constraints data structure index, assigning the entity index to

the object, and setting the values for each of the constraint fields to that of the

system constraints. This sets the entities individual constraints for later use.

d. store the bounding box data for the entity in the corresponding Base_Array

indicating the beginning point, the ending point, the height, and the primitive

type.

16) Free the following temporary arrays, beginning point array, ending point array,

created array, and the polygon points list array.

92

17) Plot the three-dimensional view of the solid data structure, thus graphically

indicating the results of the generation.

18) Return to the system manager.

4.2.3 Constraint Modeling

The last of the capabilities of the constraint-based solid modeler presented, is to provide

the ability to manipulate the three-dimensional entities in a manner which is consistent with the

behavioral characteristics dictated by the entity specifications. This, the largest requirement of

the implementation, requires the adaptation of existing procedure to provide the required

constraints upon the generation and manipulation of the entities. This section will handle the

methods of modeling and constraining the modeling process to the constraint/attributes of the

entity. Each of the main constraint/attributes is presented and includes the algorithmic outlines

for implementation.

4.2.3.1 Entity Manipulation With Constraints

The following general algorithm illustrates the basic manipulation of an entity within

the constraints set in the modeler. References arc made to routines which follow later in this

chapter. This algorithm handles the basic interaction with the user and will handle the

interaction betwcen primary and secondary entities.

I) Construct the two-dimensional representation of the selected entity adding it to the

rubbcrbanding list.

2) Begin the rubberbanding sequence by setting the penmode to xor, and reading the

new location of the mouse.

3) While the mouse button is still depressed, perform the following steps:

a. Get the current location of the mouse from the system.

am&

93

b. If the current location differs from the previous location, the following is to be

performed:

1. Check constraint satisfaction for the anticipated manipulation. The

algorithm for constraint satisfaction is presented below.

2. If movement is allowed, perform the following steps to represent the image

movement.

(a) Loop through the rubberbanding list and draw all old two-dimensional

representations.

(b) Loop through the rubberbanding list and update the representations.

(c) Loop through the rubberbanding list and draw the new two-

dimensional representations.

3. Reset the rubberbanding index to the original selected entity.

c. Set the previous point equal to the current point.

4) Reset the pen mode to patCopy in preparation for redrawing the final three-

dimensional representation.

5) Redraw the three-dimensional representation of the solid elements.

4.2.3.2 Constraint Satisfaction

The following algorithm provides the main interactive constraint satisfaction between

the interaction of entities. This accounts for proximity constraints, associative constraints, and

the manipulation of the entities within those constraints. This routine is called when geometric

editing features, such as translation, rotation and scale, arc executed by the modeler and is

capable of cxrdinating the resulting interaction caused by such editing of the primary entity.

1) If the entity is the primary entity (entity being manipulated) or the entity has a

mobility constraint set to free and the entity is not a space, perform the following,

94

otherwise, the manipulation of the entity is not allowed, control is returned to the

calling routine.

a. Check the rubberbanding list to verify the entity is not currently present. If the

entity is not listed, add the entity to the list and perform the following to

prepare the entity to be rubbcrb,"ded:

1. Construct the two-dimensional representation of the entity.

2) Transform the solid representation of the entity accordingly. including the

bounding box representation.

3) Check for proximity detection and proximity interference, storing those entities in

the appropriate table, proximity detection table, and/or proximity interference table.

(This algorithm is listed below.)

4) If the proximity detection set and the proximity interference set are both empty,

movement is allowed.

5) Check the proximity detection list to identify those entities which proximity has

been noted. If the entity in the list is not contained in the proximity interference list

perform the following association adjustments according to the constraints of the

entities.

a. If the entity in the proximity detection set has no association with the primary

entity, update the two-dimensional representation of the entity and return

control to the calling routine.

b. If the secondary entity has a mobility characteristic set to fixed, one of the

following operations must be performed.

1. If the association between the primary and secondary entity is attract, snap

the primary entity to the secondary entity as follows.

(a) While there is no interference detected, incrementally transform the

entity and update the bounding box.

95

(b) When interference is detected, restore the primary entity to its

previous position, update the hounding box, and update the two-

dimensional representation of the entity.

2. If the association between the primary and secondary entity is repel, the

primary entity is not allowed to execute the desired transformation, the

following corrective measures must be performed:

(a) Instruct the calling routine that no movement is allowed.

(b) Restore the position of the entity and the bounding box representation,

to the condition prior to the transformation conducted in step 2.

(c) Return to the calling routine.

c. If the secondary entity has a mobility characteristic set to free, one of the

following operations must be performed:

1. If the association between the primary and secondary entity is attract, snap

the secondary entity to the primary entity as follows.

(a) While there is no interference detected, incrementally transform, in the

opposite direction, the secondary entity and update the bounding box.

(b) When interference is detected, restore the secondary entity to its

previous position, update the bounding box, and update the two-

dimensional representation of the entity.

2. If the association between the primary and secondary entity is repel, the

secondary entity must check for valid transformation by calling

(recursively) the constraint checking routine and determine constraint

satisfaction for secondary entity movement.

(a) If, after return from the recursive call, movement is not allowed, the

following corrective measures must be performed on the entity:

(1) Instruct the calling routine that no movement is allowed.

96

(2) Restore the position of the entity and the bounding box

representation, to the condition prior to the transformation

conducted in step 2.

(3) Return to the calling routine.

(b) If, after return from the recursive call, movement is allowed, continue

with the procedure.

6) If the interference set contains entities which the manipulation of the current entity

effects, loop through each entity in the set, recursively calling the constraint

satisfaction algorithm, and check the constraint satisfaction for subsequent

secondary manipulation of the entity.

7) If, after return from the recursive call, movement is not allowed, the following

corrective measures must be performed on the entity:

a. Instruct the calling routine that no movement is allowed.

b. Restore the position of the entity and the bounding box representation, to the

condition prior to the transformation conducted in step 2.

c. Return to the calling routine.

8) If, after return from the recursive call, movement is allowed, instruct the calling

routine that movement is allowed, update the two-dimensional representation of

the entity,and return control to the calling routine.

4.2.3.3 Detection and Interference Determination

The basic structure of this algorithm follows a hicarchical sequence of determining 1)

proximity detection, the intersection or penetration of one proximity zone and another

proximity zone, and 2) proximity interference, the intersection or penetration of a proximity

zone and an entity. The distinction between the two becomes important when satisfying the

constraints for proximity, association, and interaction between spatial entities (solids and

-I --. ---

97

spaces), and is used to perform the appropriate operations to meet the constraints of the

modeler.

No Proximity Detection Proximity Detectin Proximity Detection

E E2 E E2

Association (El and E2) No Proximity Interference No Proximity Interference Proximiy intedence

No Association E2 Fixed El free to transform El free to transform El Retreats to
original position

No Association E2 Free E 1 free to transform E l free to transform E2 transforms(repels)
until detection is clear.

Attract with E2 Fixed E 1 free to transform E 1 Snaps to E2 El Retreats to
original position

Attract with E2 Free E1 free to transform E2 Snaps to El E2 transforms(repels)
until detection is clear.

Repel with E2 Fixed El free to transform El1 Retreats to N/A
__________________original posgion

E2 transtorms(repels)
Repel with E2 Free E free to trartil detection is clear. N/A

Figure 115: Proximity/Association Resultant Matrix.

In order to perform (his detection and notitication in an efficient manor, this algorithm

employs a hicarchical search and testing method. This algorithm utilizes preliminary, and

computationally efficient, methods of determining the entities which can be trivially rejected

from further consideration. This allows the more computationally expensive test to be

performed only on the select few entities which have the highest probability of interference

with the operations of another entity. There are three levels of testing which will be performed

,tucce ,sively on each successful candidates; bounding sphere proximity, point within an entity,

and edge intersection. The general algorithm is presented below and includes a brief

algorithmic description of each test.

98

1) Given the primary entity, check all remaining secondary entities for intersection

between the bounding spheres. This is accomplished accordingly:

a. Determine the distance between the centroid of the bounding sphere for the

primary entity with that of the secondary entity.

b. Determine the separation distance by subtracting the radius of the each entity,

primary and secondary, from the overall distance determined in l.a.

1. If the separation distance is negative, add that entity to the candidate list,

and continue.

2. If the separation distance is positive, the two entities to not intersect.

discard the secondary entity from further consideration.

2) For each secondary entity in the candidate list, check for further intersection

between proximity spaces of the primary entity and the candidate entity by

performing the two intersection tests.

a. First determine whether or not any vertex of the secondary entity's proximity

space is inside the proximity space of the primary entity, or whether or not any

vertex of the primary entity's proximity space is inside the proximity space of

the secondary entity. This is the point in an object test and must be applied to

both cases.

1. For each vertex of the proximity space of the secondary entity, determine

whether or not the vertex lies on the inside of each face of the proximity

space of the primary entity.

(a) If any vertex lies on the inside of all of the faces of the proximity

space of the primary entity, proximity detection is noted and the

secondary entity is added to the proximity detection list. Further

testing of the secondary entity is not required.

99

(b) If all vertices of the proximity space for the secondary entity fail this

test, the second portion of the test must be performed, that is, the two

entities must be tested again with the roles reversed.

2. For each vertex of the proximity space of the primary entity, determine

whether or not the vertex lies on the inside of each face of the proximity

space of the secondary entity.

(a) If any vertex lies on the inside of all of the faces of the proximity

space of the secondary entity, proximity detection is noted and the

secondary entity is added to the proximity detection list. Further

testing of the secondary entity is not required.

(b) If all vertices of the proximity space for the primary entity fail this

test, additional tests must be performed to determine other types of

intersection.

b. If the secondary entity fails the initial test, additional testing must be

performed. The secondary entity must be tested for edge intersection. Edge

intersection will determine whether or not the edge of the proximity space for

the secondary entity intersects with the proximity space for the primary entity.

I. For each edge of the proximity space of the secondary entity, determine

whether or not the edge intersects any two faces of the proximity space of

the primary entity.

(a) If the midpoint of the two intersecting points lies on the inside of the

proximity space of the primary entity, proximity detection is noted and

the secondary entity is added to the proximity detection list. Further

testing of the secondary entity is not required.

116,

100

(b) Otherwise, the secondary entity fails this test and additional tests must

be performed to determine the whether or not the last type of

intersection is valid.

3) The conclusion of step 2 will result in a list of all secondary entities in which

proximity detection has been determined.

4) For each secondary entity in the proximity detection list, check for intersection

between proximity spaces and the entities of each the primary entity and the

secondary entity by performing the three intersection tests indicated in step 2

again. This secondary testing must test for interference between the entities

themselves and the proximity space limitation of the entity. Each test must be

accomplished twofold, 1) for intersection between the secondary entity's

proximity space and the primary entity itself, and 2) for the primary entity's

proximity space and the secondary entity itself. (Keeping this in mind step two

will not be repeated here.)

5) The conclusion of step 4 will result in a list of all secondary entities in which

proximity interference has been determined, and concludes the intersecting

constraint algorithm.

CHAPTER V

C-MOD APPLICATIONS

The interactive simulation of solid and spatial entities, as previously mentioned, is

critical to the success of a constraint-based solid .nodeler. To illustrate the orchestration and

interaction between both spatial and solid entities, several brief examples of the prototypical

application C*Mod are presented. The purpose of this chapter is to provide a demonstration of

the working capabilities of C'Mod and to demonstrate it's usefulness as a conceptual design

tool. Three main areas are explored to provide this demonstration, conccptual design of an

architectural element, conceptual design of building components, and finally, conceptual

design within a design space.

5.1 Conceptual Design of an Architectural Element

Representing solid entities within a solid modeler provides the basic, and most

fundamental method of visualizing architectural elements. C.Mod provides a means of

extending this basic capability by allowing design knowledge to control, or constrain, the

generation and manipulation of the elements in a three-dimensional enviornment. To illustrate

the fundamental capabilities of the constraint-based solid modeler with regards to this

interactive process, the creation of an architectural element is sequentially presented. The

generation and manipulation of the pedestal demonstrates the interactive nature of modeler, and

illustrates that the system is capable of supporting the lower level decisions of constraint

satisfaction.

1(1

9

102
Rub eban',I
primitelegh

' in legt

in width
ax length

Figure 116: Generation of an entity Figure 117: Results illustrating the
within dimensional constraints, generated entity.

The modeling process begins with the specification of the constraints applicable to this

architectural element. Although not shown, a minimum and maximum height, length and

width have been specified for the entity. Figure 116 illustrates the generation o an entity

within those dimensional constraints. The constructions lines have been provided to illustrate

the dimensional restrictions. The results of this interactive generation process are illustrated in

a wirc-framc image in figure 117.

to the f s of the e tiy

Figure 1t8: Topological editing of Figure 119: Geometric editing of the
the entity. inserted segments.

The creation of a cube provides the designer with the basic foundation with which to

model the desired pedestal. Utilizing the topological editing operations of the modeler, the

103

designer can interactively sculpt the cube into the shape which satisfies a particular requirement

(figure 118). Further geometric editing of the newly constructed faces, allows the pedestal to

take form. Figure 119 illustrates this operations on the entity.

z

Figure 120: Subsequent topological Figure 121: Further geometric editi-g
and geometric editing to create an or a race of the architectural entity.
architectural et2ment. Note translation or a face limited to

the dimensional constraints.

By successively editing the model in this manner, the user can quickly create an

architectural element which is within the desired limitations of the dimensional requirements

without being overly concerned with the data itself (figure 120). With the element created to

meet the basic requirements, further manipulation of the entity illustrates the advantage of

interactively modeling constraints. Further molding of the pedestal is allowed to be performed

within the dimensional constraints specified (figure 121). This allows the designer the

flexibility of modeling a new form which satisfies the maximum limitations of the dimensional

constraints. The dimensional constraint construction lines were provided to illustrate the

maximum limitation, or bounds, of allowable interactive manipulation. This figure illustrates

that any topological level, in this case a face, can be edited interactively, and such interactive

editing is constrained to Qhc design knowledge which is internally represented. Subsequent

geometric editing of the capital results in an architectural element whicF satisfies the intent of

Aka,.

104

the design. Figure 122 illustrates the completed pedestal. As described in Chapter 1, the

results produced in this manncr satisfy the design objectives and requirements.

Z

Figure 122: Subsequent geometric Figure 123: Rotation of the element
editing within dimensional constraints. on the x-y plane.

As previously mentioned, the representation of the dimensional data is not restricted to

the orthogonal plane. Rotation of the pedestal (figure 123) will not disrupt or distort either the

actual dimensional data, or the constraints which are imposed on that dimensional data. Figure

124 illustrates that subsequeni scaling of the entity will still be restricted to the dimensional

limitations. This figure also provides a visualization of the bounding box which is used to

store the dimensional data, and to ensure satisfaction with the dimensional constraints.

Current ZCurrent
Length Data Heiht Data

Figure 124: illustration of the data Figure 125: Illustration of completed
represented after rotation, architectural element modeled in CoMod.

105

The results of the interactive solid modeling process within the limitations of design

knowledge are provided in figures 125 and 126. The designer has created a pedestal which

will perform as a solid entity, and which was created interactively within dimensional

guidelines specified. By providing additional constraints upon the entity, such as mobility and

relationship characteristics, the pedestal will behave in a manner which is consistent with its

definition.

iV

Figure 126: A rendered illustration of an architectural element, which
was created utilizing the constraint operations of C.Mod.

5.2 Conceptual Design of Building Components

The previous section discussed the construction of an architectural clement within the

guidelines of design knowledge. Taking the process one step further, into interactive modeling

of a conceptual design utilizing building components, the benefit of providing behavioral

characteristics which constrain the interaction between these components can be clearly shown,

This section explores the interaction between entities during the interactive modeling process

106

and provides an example of the use of a constraint-based solid modeler during the conceptual

design process. The discussion centers around the development of a conceptual design in

which three rooms are to be modeled as a building mass. Emphasis is placed on the interaction

and behavior of the conceptual elements during the interactive process.

Three rooms have been modeled utilizing the void modeling operations of C.Mod. These

rooms are modeled as solid entity with no floor or ceiling, and include a window. Figure 127

illustrates a wire-frame representation of these components. The scene can be interactively

manipulated by selection of an object and translating it in three-space. Since none of the

objects have any relationship or mobility restrictions placed upon them, interaction between

solid entities results in subsequent translation, and therefore, allow solid objects to move other

solid objects. Figure 128 illustrates this cascading, or ripple effect of translating room A along

the x-y reference plane. Since C.Mod interactively models this effect, the user can visualize

the consequences, or benefits, of editing the scene without being concerned over overlapping

objects, or conflicting entities.

Room Solids

Room B
2Z

Y

Room A

Figure 127: An illustration of three rooms Figure 128: Geometric editing of room A,
created with the void modeling operations, and subsequent translation of B and C.

107

Placement of the rooms, can be made quickly and efficiently,without the need for exact

precision. This can be accomplished by determining the desired location of one of the rooms,

and fixing its mobility in three-space. This allows other entities to be placed directly against it

without the entity being displaced. Figure 129 illustrates the results of such interactive

manipulation where room C was placed and fixed in three-space, and the other rooms were

subsequently located.

Figure 129: Final placement of three rooms Figure 130: Generation and placement of a
constrained by the solidity of the entities. horizontal solid entity.

The conceptual design progresses further by generating a roof element with

dimensional constraints attached (figure 130). Manipulation of the reference plane to place the

roofing element over the rooms will allow element to be placed in a desirable position.

Considering that room C has a fixed mobility, the roof element can be translated along the z

axis to align the top of each of the rooms with the bottom of the roof. Since room C restricts

any further movement of the roof, the user does not have to be concerned with precision. In

108

addition, rooms A and B do not require further alterations since their mobility is free, the

translation of the roof results in the translation of the rooms (figure 131). Once again, the

benefit of modeling solid characteristics are easily visualized.

Creating and duplicating similar entities can be tedious at times. Therefore, CoMod

provides the user with the ability to replicate entities when the generation process exceeds a

dimensional boundary. An application of the replication operation is the generation of columns

to support the roofing element. By selecting replication in the length direction, a series of

columns can be created from a single generation sequence. Figure 132 illustrates the

generation of three columns within dimensional constraints. Note that the construction lines

for the replicated entities are not provided. The results of this multiple generation process are

illustrated in figure 133. It is important to note that all three columns have identical set of

constraint specifications. Thus not only the objects but the constraints are replicated as well.

- Y

Room C - fixed

in three-space. Columns generated -
with replication feature.

Figure 131: Geometric editing of the roof Figure 132: An illustration of element
entity and resulting interaction with the generation within dimensional constraints
rooms. Note room C is fixed and restricts with the replication operations activated.
any further movement of the roof

IL.

109

The conceptual design can be further enhanced by the proper placement of the columns

(figure 134), and the modification of the roof. The roof can be manipulated throtgh the use of

the topological and geometrical editing features of the modeler. Additionally, since the roofing

element has a height constraint, vertical translation will be limited to this upper limit (figure

134). This 6,-o of the dimensional constraints illustrates an efficient method of interactively

modeling an entity.

Maximum Height
lirittion

Y Y

Figure 133: The results of multiple column Figure 134: Topological and Geometric
generation by replication, editing within dimensional constraints.

Utilizing the topological and geometric editing operations of the modeler, a complete

hip roof can be generated to enhance the design (figure 135). Additionally, setting the mobility

of thc roof element to fixed and establishing an attract association with all objects of the column

type will enable the columns to be snapped to the bottom of the roof. This establishes an

attract association and will keep the columns and the roof together in the event that either are

moved. Figure 136 illustrates the results of this attraction between the roof and the columns.

110
Topological editing and oof element fixed
su equent geometric A three-space.

eting of roof element.

Coluamns tr a td and
constrained t the bottom
of the roof el ment.

Figure 135: Continued topological and Figure 136: Translation of the columns
geometric editing of the roof element. constrained by the mobility of the roof.

Z

-Y V
Base translated and
constrained to the botto
of the columns.

Figure 137: Elevation view of the Figure 138: Results of the constraint-based
placement of a base for the columns Interactive modeling utilized for a conceptual
restricted by the mobility of the roof. design.

111

To complete the conceptual design, the columns need to be attracted to a base to

provide additional support. To illustrate that the modeler can perform (he same operations,

regardless of the reference plane, or view, figure 137 provides a side elevation in which a base

is being modeled. The interactive nature of the modeler does not preclude the use of any view,

thus, allowing interactive modeling in three-space from any available view.

Providing a means of realistically modeling design knowledge allows the conceptual

design phase to respond to behavioral and physical requirements set by the user. Results of

the interactive modeling process utilizing the constraints are illustrated in figures 138 and 139.

r1

Figure 139: Rendered results of a schematic design solution utilizing C.Mod.

112

5.3 Conceptual Design Utilizing the Design Space

With the understanding of the constraint-based modeling applications at the entity

generaticn level of conceptual design, and the entity interaction level of conceptual design, the

final discussion of the application of the modeler provides a visualization of the concepts of

interactive modeling withi i a realistic design space. This section illustrates the process of

establishing a hypothetical design space in which solid entities representing spatial forms can

be generated and manipulated within the constraints of the design space as well as the

constraints imposed on the entities themselves. The results of this interactive constraint-based

modeling illustrate the use of CoMod as a conceptual design tool.

Figure 140: Creation of a design space Figure 141: Modeling the design space
within dimensional constraints, interactively by inserting a segment in

the face of the space.

To begin the process of interactive constraint-based solid modeling, a design space is

created (figure 140). This allows a site to be modeled, with appropriate setbacks, height

restrictions, and shadow/sunlight restrictions. Figure 141 above illustrates the result of the

generation process, and the beginning of the interactivt editing process. The design space has

been generated with a proximity offset established in the width direction, and is used to

illustrate a side yard setback within the allowable design space.

113

Figure 142: Establishing the shadow/ Figure 143: The generation of a solid
sunlight restriction upon the design space. entity within the design space.

Further geometric editing of the design space allows the entity to be modeled to allow

for the shadow and sunlight restrictions which may be imposed upon the site. The results Of

this interactive topological and geometrical editing is a solid model representation of the site

constraints, and thus the allowable design space. Figure 142 above, illustrates the completed

allowable design space. To begin the process in conceptual design within the allowable design

space, figure 143 illustrates the introduction of a conceptual solid entity to the modeling

environment.

Figure 144: Translation of the solid entity Figure 145: Interactive modeling of
within the design space, and restricted to the solid entity within and constrained
the constraints of the design space. to the design space.

114

The interactive modeling process continues with the geometric editing of the entity

within the allowable design space. Since the design space has a proximity zone established

representing the side yard setback, geometric editing of the solid entity will not penetrate either

this proximity zone or the established limits of the design space. Figure 144 illustrates the

translation of the entity within, and constrained to, the allowable portions of the design space

Figure 145 illustrates the geometric editing of a segment which is constrained to the

sunlight/shadow restrictions of the design space.

Figure 146: Subsequent geometric editing Figure 147: Creation of a second
of the solid entity constrained to the entity within the design space.
height and shadow setback of the design
space.

Additional geometric editing of the solid entity allows the form to be molded to the

restrictions of the design space (figure 146). Since CoMod constrains this modeling process

interactively, the user can perform editing functions up to the bounds of any established

constraint. The figures above illustrate this interactive geometric editing within the design

space, and include the introduction of a second solid entity to the conceptual design process

(figure 147).

115

Figure 148: Vertical translation of the Figure 149: Association attribute of
solid entity constrained to the height attraction established between the two
limitations of the design space. solid entities.

Once the entity has been generated, relationship criteria can be established between the

entities. Figures 148 and 149 above, illustrate the vertical translation of the entity to the height

restriction of the design space, followed by the specification that the entity is to respond in an

attraction association between it and the first entity created. By setting mobility of the first

figure to fixed, any transformation of the second entity within an established tolerance from the

first will cause it to snap up to the face and therefore connect the two entities. Providing this

relationship enables the entities to act as a cohesive group. thus any transformation on either

entity will effect both entities.

Figure 150: Generation of additional solid Figure 151: Completion of the
entities within the design space. conceptual design within the design

space.

116

Continuing the process of generation and manipulation in a similar manner, additional

conceptual entities can be introduced and modeled within the design space. Figures 150 and

151 illustrate the placement and editing of additional conceptual entities thus completing the

conceptual design within an allowable design space. The completed conceptual design is

illustrated in figure 152, and shows the solution with and without the design space visible.

Since the modeler interactively restricts the generation and manipulation of entities within

satisfaction of the established constraints, the conceptual design is known to be within the

goals, objectives, and restrictions of the design space.

-x7

A)

B)

Figure 152: An Illustration of the rendered results of the conceptual design created by the
prototypical application C*Mod. A) Illustrates the conceptual design with the design
space rendered. B) Illustrates the conceptual design without the design space.

4

117

5.4 Summary of Applications

The applications presented in this section are a small representation of the prototypical

application CoMod. CoMod illustrates that the concepts of constraint-based solid modeling is a

viable means of representing physical and relational design knowledge in an interactive solid'

modeling environment. The application demonstrates that the modeling of the physical

interaction between solid entities, spaces, and constraints. canl be applied to the early stages of

the design process, including schematic design. The demonstration provides a means of

exploration of the design envelope, or design space, in a means which is consistent with

expected behavioral patterns of the entities generated and modeled. A designer is therefore free

to create solid entities, or solids representing spatial entities, and model not only the specific

geometry or topology, but the interaction between entities realistically. The results of which is

that the computer is capable of providing the lower level decisions, such as encroachment upon

a setback line, or the intersection of two solids, and adjusting, or reacting to the user in the

form of an immediate response.

CHAPTER VI

EXTENSIONS AND FUTURE DIRECTIONS

During thc course of its presentation, this thesis focused on a narrow spectrum of

design knowledge which can be represented in the interactive three-dimensional modeling

process. The scope of work was limited in nature duc to time constraints. However, its

purpose was to provide a functional prototype which could bc utilized to illustrate the

practicality of implementation. This does not suggest that this is all that can be done on the

subject. On the contrary, their is much room lor extension and expansion of thought both in

terms of the prototypical application CoMod, and the fundamental theory of constraint-based

solid modeling. This chapter seeks to explore the frontiers of such direction by discussing

several possible extensions to the prototypical application as well as extensions to the prescnted

constraint-based modeling operations and theory. In addition, this chapter will discuss the

anticipated future direction of constraint-based solid modeling and its futurc role in the

interactive prxcss of Computer-Aided Architectural Design.

6.1 Extensions to C'Mod

The prototypical application C-Mod is not the solution to the constraint-based question,

there is room for improvement. This section elaborates on a two important areas which would

enhance the application and provide a fully developed interactive modeler. The first, is

extensions to the operations implemented, and includes the completion or implementation of

the basic constraint operations discussed in Chapter I. The second, is to take advantage of

118

119

coherence in the implementation of the internal workings of the application. Both of these

extensions are discussed in the following sections.

6.1.1 C'Mod Operations

Due to restricted time constraints, several basic operations were not implemented or

fully developed. To provide a complete working prototype of the operations discussed in

Chapter 11, CoMod would need to have these operations included. Among the operations left

out are the spatial characteristics, which would support area anu v'olmctric constraint

modeling, rotational attributes, which would support three-dimensional rotational constraints,

and containment relationships, which would allow the specification and ownership of

elements. The implementation of these operations is not a major undertaking, since the user

interface and internal representation arc in place. However, implementation of these operations

would greatly reduce the efficiency of the algorithms required to produce realistic real-time

responses in the interactive modeling process.

6.1.2 Algorithm Coherence

C*Mod can effcctivcly provide realistic responses to the interactions between entities in

the current implementation. However, it is possible to enhance these operations by taking

advantage of the coherence presented in the internal structure of the entities. One such

coherence is provided in the method of determining when to transform secondary entities

which intersect, or collide with the primary entity. Once interference is detected,

transformation in the same direction implies that interference will always be detected.

Thereforc, taking advantage of this information will greatly reduce the number of calculations

required during the transformation. Conversely, if an entity is translorming in a direction

away from another entity, with the exception of the association relationships, there is no need

to confirm that the entities do not interfere with one another, this is inherent as well. By taking

120

advantage of inherent nature of objects in three-space, the execution of the program could be

greatly enhanced, and therefore provide a more realistic response in the interactive modeling

process.

6.2 Extensions to Constraint-Based Modeling Operations

The extensions to the prototype application discussed above would allow the

introduction of additional operations to the constraint-bascd modeling environment. This

section discusses some of these extensions in general and includes the exploration of additional

entity characteristic, relational characteristics, and physical laws of nature.

6.2.1 Entity Characteristic Operations

The entity characteristic operations presented as the basic set of constraints specifically

apply to the physical description of the entity. These physical descriptions included

representation, dimensional criteria, area and volumetric requirements, and mobility. This

avenue of operations was selected as a fundamental set of operations which would illustrate the

basic interactive nature of constraints upon the modeling process. In the event that the modeler

was to assume a more realistic role, additional operations would be required. Operations such

as mass, surface texture, rigidity, and selectable mobility. The following is a brief discussion

of each of these possibilities.

The entity characteristic of mass would allow the modeler to introduce the natural laws

of physics to the interactive process. The mass of an entity would determine potential energy

which would be transferred during an interaction. Additionally, it would effect the momentum

the entity gains and sustains during the interactive modeling process. The use of this

characteristic would include modeling momentum of a structural member or component, and

visualizing its reaction in a three-dimensional environment.

121

Surface texture would again allow the modeler to react to natural laws of physics. The

surface qualities of an entity determine the friction generated when two objects are transfbrmed

along their faces, and would effect the relational characteristics of the modeling process. The

use of this characteristic would include realistically modeling the interaction between elements

of diffcring surface qualities such as a table leg being transformed along a carpeted floor.

Another physical characteristic which would benefit the constraint-based modeling

approach is the use of rigidity. Rigidity would allow the modeling of materials with differing

physical compositions. A wood column could be modeled with its base fixed in three-space.

and interactively forced to bend until failure. The use of this characteristic is evident in the

interactive modeling of structural components during the design process.

A final extension to the entity characteristic operations is that of specifiable mobility.

Currently the mobility of an entity is fixed as an object. To realistically model the interaction

with other entities, and utilizing some of the additional features listed above, the modeler must

be able to fix any topological level of the entity in three-space. With this extension it would be

possible to model the column example presented above by specifying that the bottom face of

the column was to be fixed in three-space.

6.2.2 Relational Characteristic Operations

The interactive nature of a constriant-based modeler must allow, and provide for,

relational characteristics between entities. This thesis proposed a few of the basic relationship

which exist between entities such as containment, association, and proximity. In addition to

these several other relationships could be modeled to enhance the realistic interactions between

elements. Among those are ownership, grouping, and topological associations. Each of these

additional operations are discussed below.

Ownership differs from containment in that an entity can own, or belong to another

entity outside the bounds of a spatial representation. This relationship would establish a bond

122

between entities which would permit it to perform as a contiguous collection of entities while

still retaining the individual characteristics. Thus a roof system composed of structural beams,

joists, decking, and insulation could behave as a contiguous unit when being transformed in

three-space while behaving in accordance with the requirements of each individual component.

Grouping would allow a collection of entities to bc grouped together into a cohesive

unit. This differs from ownership in that the individual characteristic are not retained. The

collection of entities behaves as a single entity with its own set of constraints to be applied to

the modeling process. In this relationship the components of a chair, arms, legs, seat, and

back, could be grouped together and given its own set of constraints, or design knowledge,

which identifies it as a chair, and therefore controls its behavior as a single entity.

The final additional relational operation is an extension to the existing association

operation. By allowing the speci:ication of associations between topological levels, an

interactive modeler could associate, attract or repel, differing parts of the entity. Certain faces

of an entity may be required to retain an attract association, such as the ends of a wall, while

others may be required to retain a repel association, such as an opening for a door. By

allowing this diversity within the entity itself, realistic situations can be modeled.

6.2.3 Physical Laws of Nature

To facilitate the realistic interaction between entities in an interactive modeler, the next

logical extension would be to include the physical laws of nature to the modeling process.

This is particularly important when determining the reactions from colliding entities. The

resultant direction vector may not be in parallel with, and containing the same force of, a the

moving entity. It is therefore important that when implementing any of the additional

operations suggested, that the natural laws of physics be considered as a primary extension to

the application.

123

6.3 Future Direction of Constraint-Based Solid Modeling

The potential for an interactive constraint-based solid modeling tool is clearly evident

when considering the realistic interaction between entities, both in the physical and

metaphysical sense. To bring solid modeling into the early stages of design, a modeler must

be capable of supporting these interactive qualities to realistically model the environment. As

the pretense for this thesis, interactive modeling within the quidelines established by the local

zoning ordinances, building codes, and construction practices, provides a powerful foundation

for future development of interactive solid modelers.

The future direction of constraint-based solid modeling stems from the ability to

represent and model design knowledge to aid in the conceptual design process. This design

knowledge, whether user specified, or read from a database containing the specific zoning

ordinances, allows the modeler to perform as a powerful design tool in which the designer can

call on and utilize that information in an interactive modeling platform. In this role, the

constraint-based solid modeler provides an important tool which the designer can use to

enhance the conceptual and schematic design process.

CHAPTER VII

CONCLUSIONS

The application or design knowledge to the interactive modeling process as illustrated

and presented, provides a foundation for the exploration of realistically constraining the

behavior of user definable three-dimensional geometric entities. The goal of this thesis, as

stated in Chapter 1, section 1.4, was to develop a constraint-based solid modeler for

architectural applications which can be utilized as a tool for Computer-Aided Architectural

Design. This thesis met that goal by successfully achieving the objectives stated. How the

objectives were satisfied follows.

The first objective, was to provide the ability to generate, represent, and manipulate

three-dimensional geometric entities through the use of a graphical interface. This included the

facilities to store and support geometric and topological editing features at the point, segment,

face, and volume levels. C-Mod provided this ability by supporting the internal solid data

structure as specified in Chapter IV. The interactive nature of the generative and manipulative

process of the modeler provided an excellent foundation for the implementation of constraint-

based operations.

Secondly, the implementation was to allow for the specification of design knowledge

applicable to user definable three-dimensional geometric entities such as solids or spatial

representations. This included the ability to define, modily, store, and retrieve constraints

upon the environment as well as the individual entities. Through the interactive user interface,

C*Mod provided a dialog between the user and the application which facilitated this

specification and manipulation of design knowledge. Additionally, the prototypical application

124

125

provided a means by which the entire set of constraints could be easily and permanently stored

and retrieved at the discretion of the user.

The third objective was to provide the ability to manipulate the three-dimensional

geometric entities in a manner which is consistent with the behavioral characteristics dictated by

the entity specifications. As illustrated in Chapter III and Chapter IV the prototypical

application provided this realistic interaction of entities in an efficient and realistic manner.

This interaction allowed the generation and manipulation of entities which facilitated the use of

design knowledge to model a space constrained by realistic site requirements. The results of

which allowed the interactive modeling within a design space.

Finally, the last objective was to provide the ability to extract information from an

entity, which was provided by the specification of the entity. This was achieved by providing

a query operation in the constraint mode. A user therefore has the ability to view the entire set

of constraints, for any existing entities as well as the system specifications.

The primary expectation of this thesis was to contribute towards the development of an

architectural solid modeler, which has the ability to represent information about a specific

entity, as a foundation for design research, education, and practice. Four main goals were

achieved in this research. One, support of the theoretical foundations which have preceded this

research, including the support for the interactive constraint process of achieving problem

satisfaction. Two, the delineation and definition of the basic components for a constraint-

based solid modeler, including the representation of' design knowledge, and the realistic

interaction of conceptual entities. Three, the successful implementation and evaluation of a

prototypical application, C-Mod, which illustrated concepts and theories presented. And four,

the establishment of a strong foundation for further research and education in the use of

interactive constraint-based systems in CAAD applications.

In 1973, Geoffrey Broadbent, discussed the use of computers to aid in the exploration

and development of the design space interactively. By extending this early discussion to

126

include the generative and manipulative capabilities of a solid modelcr, and modifying the

theories of the modeling process to include interactive constraint satisfaction, design

knowledge, and therefore constraints, can logically and efticiently enable a designer to bring

the compuier closer to the early stages of the design process. The ability to realistically

represent the solid and spatial entities, as well as their behavioral patterns, provides an

additional benefit of interacting with the modeler in a realistic manner. This thesis has

illustrated that the application of design knowledge in CoMod, although limited in scope, can

provide an interactive modeling environment which allows design knowledge to constraint or

limit the generation and manipulation of solid and spatial entities, and that the use of such a

design ux)l has a strong and desirable link to the conceptual stages of the design process.

LIST OF REFERENCES

AIA, (1987). "Building design." In American Institute of Architects - Handbook of
Professional Practice. I1th ed., Ch 2.5, American Institute of Architects.

Addison, M.S. (1988). A Multiple Criteria Satisficing Methodology for the Design of Energy-
Efficient Buildings, Master's Thesis, Arizona State University.

Adeli, H. (1990). Knowledge Engineering, Volume 1, Fundamentals. McGraw-Hill, New
York.

Adeli, H. (1990). 10owledge Engineering, Volume II, Applications. McGraw-Hill, New
York.

Akin, 0. (1986). Psychology of Architectural Design, Pion Limited, Brondesbury Park,
London.

Angel, E. (1990). Computer Graphics, Addison-Wesley Publishing Company, Reading,
Massachusetts.

Archer,L.B. (1969). "The structure of the design process." In G.Broadbent and A.Ward
(eds.), Design Methods ii Architecture, Lund Humphries, London, pp. 76-102.

Archer,L.B. (1970). "An overview of the structure of the design process." In G.T. Moore
(ed.), Emerging Methods in Environmental Design and Planning, The MIT Press,
Cambridge, Massachusetts, pp. 285-307.

Asimow, W, (1964). Introduction to Design, Prenticc-Hall, Englewood Cliffs, New Jersey.

Berger, M. (1986). Computer Graphics With Pascal, The Benjamin/Cummings Publishing
Company, Inc., Menlo Park, California.

Bijl, A. (1987). "Strategies for CAD." In Proceedings form the First Eurograhics Workshop
on Intelligent CAD Systems, Noordwigkerhout, The Netherlands, (April)

Broadbent, G. (1973). Design in Architecture, John Wiley & Sons, London.

Carrara, G., and G.Novembri (1985). "Constraint-bounded design search." In A. Pipes
(ed.), Computer-Aided Architectural Design Futures, Buttersworths, London, pp. 146-
157.

Chernicoff, S. (1987). Macintosh ' Revealed, Volume One: Unlocking the Toolbox, Haden
Books, Indianapolis, Indiana.

127

128
Chernicoff, S. (1987). Macintosh T" Revealed, Volume Two: Programming with tle Toolbox,

Haden Books, Indianapolis, Indiana.
Cross, A. (1986). "Design intelligence: the use of codes and language systems in design." In

Design Studies, vol 7, no 1, January.

Cohon, J.L. (1978). Multiobjective ProgrammitgaiiPlanntg, Academic Press, New York.

Coyne, R.D, and J.S.Gero, (1985). "Design knowledge and sequential plans." In
Environment and Planning B. 12:401-418.

Coyne, R.D. and J.S.Gero, (1986). "Semantics and the Organization of knowledge in
design." In Design Computing, 1(1):68-89.

Coyne, R.D., M.A.Roscnman, A.D.Radford, M.Balachandran, and J.S.Gero. (1990).
1Knowledge-Based Design Systems, Addison-Wesley, Reading, Massachusetts.

Debenham, J.K. (1989). Knowledge Systems Design. Richard P. Brent (ed.), Prentice Hall,
New York.

Eastman, C. M. (1970). "On the analysis of intuitive design processes." In G.T. Moore
(ed.), Emerging Methods ii Environmental Design and Planning, The MIT Press,
Cambridge, Massachusetts, pp. 38-47.

Eastman, C.M. (1985). "Abstractions: a conceptual approach for structuring interaction with
integrated CAD systems." In Computers and Graphics. 9(2):97-1105.

Eastman, C.M. (1986). "Fundamental problems in the development of computer-based
architectural design models." In Proceedings, The Computability of Design. 1986
SUNY Buffalo Symposium on Computer-Aided Design.

Foley, J. D., A. van Dam, S.K.Fiener, J.EHughes, Computer Graphics: Principles and
Practice, Addison-Wesley Publishing Conpany, Reading Massachusetts.

Gero, J.S. (1985). "An overview of knowledge engineering and its relevance to CAAD." In
A.Pipes (ed.), Computer-Aided Architectural Design Futures, Buttersworths, London,
pp. 107-119.

Gips, J., and G.Stiny. (1980). "Production systems and grammars: a uniform
characterization." In Environment and Planning B, 7:399-408.

Glassner, A.S. (1989). 3D Computer Graphics, A User's Guide for Arttsi.i and Designers,
Design Press, New York.

Gross, M., S.Ervin, J.Anderson, A.Fleisher, (1986). "Designing with constraints." In
Proceedings, The Computability of Design. 1986 SUNY Buffalo Symposium on
Computer-Aided Design.

Kalay, Y.E. (1985). "Redefining the role of computers in architecture: from drafting/modeling
tools to knowledge based design assistant%." In Computer Aided Design, vol.17,
no.7. September.

129
Kalay, Y.E. (1989). Modeling Objects and Environments, John Wiley & Sons, New York.

Landsdown, J. (1985). "Requirements for knowledge-based systems in design." In A. Pipes
(ed.), Computer-Aided Architectural Design Futures, Buttersworths, London, pp. 120-
127

Leon, S. J. (1986). LinearAlgebra with Applications, Macmillan Publishing Company, New
York, 2nd edition.

Maher, M.L. (1984). HI-RISE: An Expert System for the Preliminary Structural Design of
High Rise Buildings, Ph.D. Thesis, Department of Civil Engineering, Carnegie Mellon
University, Pittsburgh.

Maher, M.L. (1985). "HI-RISE and beyond: directions for expert systems in design." In
Computer Aided Design, vol 17, no 9, November.

March. L., and G.Stiny, (1985). "Spatial systems in architecture and design: some history
and logic." In Environment and planning B, 12:31-53.

McIntosh, P.G. (1986). "Models of spatial information in computer-aided architectural
design: a comparative study." In Proceedings, The Computability of Design. 1986
SUNY Buffalo Symposium on Computer-Aided Design.

Mednieks, Z.R., and TM. Mednieks (1989). C Programming Techniques for the
Macintosh®, Howard W. Sams and Company, Carmel, Indiana.

Mitchell, W.J., J.P.Steadman, and R.S.Liggett. (1976). "Synthesis and optimization of small

rectangular floor plans." In Environment and Planning B. 3:37-70.

Mitchell, W.J. (1977). Computer-AidedArchitectural Design, Petrocelli/Charter, New York.

Mitchell, W.J. (1986). "Reasoning about form and function." In Proceedings, The
Computability of Design. 1986 SUNY Buffalo Symposium on Computer-Aided
Design.

Mitchell, WJ. (1990). T/he Logic of Architecture, The MIT Press. Cambridge,
Massachusetts.

Mortenson, M. E. (1985). Geometric Modeling, John Wiley and Sons, New York.

Negroponte, N. (1972). The Architecture Machine, The MIT Press, Cambridge,
Massachusetts.

Negroponte, N. (1975). Soft Architecture Machines, The MIT Press, Cambridge,
Massachusetts.

Pang, G.K.H., and A.G.J. MacFarlane, (1987) "An Expert Systems Approach to Computer-
Aided Design of Multivarilable Systems." In M.Thoma and A. Wyner (eds.) Lecture
Notes in Control and Information Sciences, Springer-Verlag, Berlin.

Payne, E.C., and R.C. McArthur, (1990). Developing Expert Systems, A Knowledge
Engineer's Handbook for Rules and Objects, John Wiley & Sons, Inc, New York.

130
Plastock, R.A. and G.Kallcy, (1986). Computer Graphics, Schaum's outline series in

computers, McGraw-Hill Book Company, New York.

Pugh, K. (1990). All on C, Scott, Foresman/Little. Brown Higher Education, Glenview.
Illinois.

Radford, A.D., and J.S.Gcro, (1985). "Towards generative expert systems for architectural
detailing." In ComputerAided Design, vol 17, number 9, November.

Radford, A.D., and J.S.Gero, (1988). Design by Optimization in Architecture, Building and
Construction, Van Nostrand Reinhold, New York.

Reitman, W.R. (1964). "Heuristic decision procedures. open constraints, and the structure of
ill-defined problems." In M.W.Shellcy, and G.L.Bryan, (eds.), Human Judgements
and Optimality, Wiley, New York, pp. 282-315.

Rich, E. (1983), Artificial Intelligence. McGraw Hill, New York.

Rittel, H.W.J. (1971). "Some principles for the design of an educational system for design."
In Journal ofArchitectural Education, vol 26, no 1, pp. 16-26.

Rogers, D. F. (1985). Procedural Elements for Computer Graphics, McGraw-Hill Publishing
Company, New York.

Rosenman, M.A., and J.S.Gero, (1985). "Design codes as expert systems." In Computer
Aided Design, 17(9):399-409.

Schildt, H. (1987). Artificial Intelligence using C, The C Programmers Guide to Artificial
Intelligence Techniques. Osborne McGraw-Hill, Berkeley, California.

Shapiro. S.C., and J.Geller, (1986). "Artificial intelligence and automated design." In
Proceedings, The Computability of Design. 1986 SUNY Buffalo Symposium on
Computer-Aided Design.

Simon, H.A. (1983). "Search and reasoning in problem solving." In Artificial lntelligence,
vol 21, pp. 7-29.

Spiegal, M.R. (1968). Mathematical Handbook of Formulas and Tables. Schaum's outline
series in mathematics, McGraw-Hill Book Company, New York.

Sussman, G.J. and G.Steclc, (1980). "CONSTRAINTS - A language for expressing almost
hierarchical descriptions." In Artificial Intelligence August 1980, 1-40.

Swerdloff, L.M, and Y.L.Kalay, (1986). "A partnership approach to computcr-aided design."
In Proceedings, Vie Computability of Design. 1986 SUNY Buffalo Symposium on
Computer-Aided Design.

Tomiyama, T. and P.J.W. ten Hagen, (1987). "The Concept of Intelligent Integrated
Interactive CAD Systems, CWI Report No. CS-R87117." In Center for Mathematics
and Computer Science, Amsterdam, (April).

131
Tomivama, T and P.. ten H-agen, (1987). "Organization of' Design Knowledge in an

Intelligent CAD Environment, CWI Report No. CS-R8720." In Center for
Mat/,ernatics and Computer Science, Amsterdam. (April).

Veklerov. E. and O.Pekelny, (1989). Computer Language C, Harcourt Brace Javanovich
College Outline Series, Harcourt Brace Javanovich. Publishers, New York.

Walters, J. and N.R.Nielson, (1988). Crafting Knowledge Based Systems. Expert Systems
Made Realisfic. John Wiley & Sons, New York.

Watt. A. (1989). Fundamenitals of Three-Dimensional C'omputer Graphics, Addison Wesley
Publishing Company, Wokingham, England.

Woodwark. J. (1989). Geometric Reasoning, Oxford University Press. New York.

Yessios. C.l. (1983). "Architectural modeling: eliminating the design/drafting split in CAAD."
In National Comnputer Graphics Association Conference, Ju ne.

Yessios, C.l. (1987). "Architectural modeling and knowledge systems.' In Proceedings,
NCGA Computer Graphics.

